

International Convention for the Control and Management of Ships' Ballast Water and Sediments

A Ship Owner's Perspective

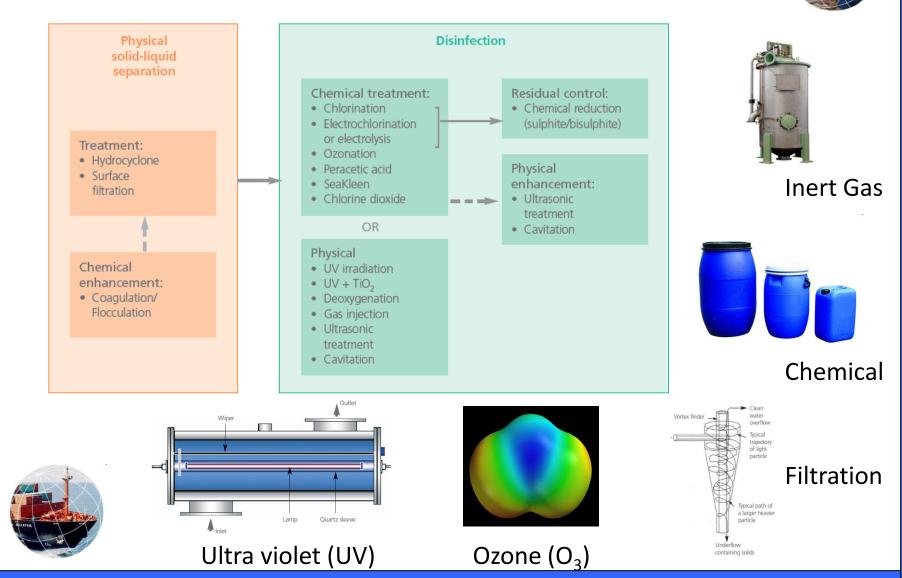
TONCI TADIC, Director of Environmental Strategy & Research

Zodiac Maritime Agencies Ltd

Contents

- Decision Factors
 - Systems
 - Case Studies
- New Build/Retrofit
 - Pros & Cons
- Possible Problems for Owners
 - Questions?

Decision Factors


- Vessel Type
- Total ballast and maximum rated pump capacities (m³/hr)
- Pump and piping considerations
- Likely trading pattern
- Engine room/pump room arrangement & electrical supply
- System flexibility and arrangement requirements
- Intrinsically safe (determined by vessel type and lay out)
- Dry dock or in-service fit
- Impact on tanks and paint work
- System operation and through life maintenance
- Crew training and familiarisation
- Supply of consumables and availability of approved servicing agents

- Ultimately:- which systems, suit which ships?

Systems

Case Study 1 - Filtration/Cavitation/Ozone

Vessel Type - Cape (211,000 DWT), total ballast capacity: 101,454.7m³

- Pumps: x2/3,200m³/hr centrifugal electric (located in E/R)
- 2 Filters required (one per pump) 4.5m/1.5m dia. => large space requirements
- Cavitation system can be split and arranged either in a loop or horizontally
- Ozone generator must be located within 20m of cavitation loop
- Operational considerations:
 - + Vessel draft in ballast condition
 - + Engine room access and overhead clearance for filters
 - + Back pressure increase on ballast pumps
 - + Electrical supply will require additional 440V to 220V transformer
 - + Ballasting of aft peak
- + Gravity ballasting not an option as minimum flow rate required for cavitation
 - If feasible work to go ahead during dry docking

Case Study 2 - Filtration/Electrolysis/Chemical

Vessel Type - Cape (180,000 DWT), total ballast capacity: 78,392m³

- Pumps: x2/2,500m³/hr centrifugal electric (located in E/R)
- 2 Filters required (one per pump) => large space requirements
- Electrolysis unit can be located in convenient location
- Hydrogen generation (requires blower and dilution)
- Operational considerations:
 - + Hydrogen control
 - + Neutralising agents required on discharge (supply and storage)
 - + Crew safety when handling chemicals
 - + System allows easy ballasting of aft peak
- Possibility to carry out in-service installation being reviewed

New Build:

- Integrated into ship from design stage
- Greater optimisation
- May result in shipyard specified system (how do we know this is the best option?)

• More pressure to install now

Retrofit:

- Each project will be different & require specific solutions
- Easiest when completed during a docking period
- More flexibility on system selection
- Time period available for other systems to come to market

Pros & Cons

Equipments	Good points	Bad points	Cost basis on 2 x 2,500 M3/hr	
			Approx. Price	kW
Filter + UV system		 * u.s.a rule : not confirmed * ttl processing and UV 	usd 2,000,000	950
	* simple system and easy	e system and easy equipments are too many tion * high power consumption	Euro 1,960,000	1,200
	automation * crew and ship safety		usd 1,740,000	800
Deoxygenation	* environmental friendly (no 2nd pollution)	too many equipments and expensive	euro 2,000,000	593
	* high protection of corrosion in ballast tanks	IMO D2, USCG rule - not confirm	usd 1,417,000	abt 220
Ozone injection	* high sterilization * low power consumption	* carcinogenic substance(bromate) *	?	?
		serious corrosion in ballast tanks * crew and ship safey problems	usd 1,700,000	322
Electrolysis	 * high sterilization * low power consumption * side stream * Skid package supply * simple installation at any place 	 * substance CI2, H2 gas * crew and ship safey problems * marine pollution problems + neutralization and then deballast * performance down in fresh 	usd 1,250,000	200
			?	?
			?	?
			?	?
		water * explosion proof space to install	usd 1,549,000	367
Chemical (chlorite)	* high sterilization (ClO2,	* chemical tank and supply	?	?
	Peracetate)	* chemical dangerous	?	?
		* Sulphuric acid + Purate required		

Possible Problems for Owners - 1

- System type approval carried out at 1 temperature and 3 salinity's, will they function in real world conditions? How do owners know whether the system is operating as per approval?
- The Convention doesn't allow any Exemptions if the installed system breaks down it must be repaired prior to operations continuing to the satisfaction of PSC
- Unknown costs (consumables/additional electric power/maintenance etc)
- Availability of spares and consumables
- Disposal of consumables and used equipment
- Installation process (in service or dry dock), tank cleanliness and costs for sediment disposal if required
- Water samples being rejected after the vessel has sailed (banned from entering port in the future)
- Uptake water quality and impact on system
- River passages with mud accumulation and removal

Possible Problems for Owners - 2

- Water sample fails during loading/discharge operation and ballast water cannot be discharged as treated on up-take how to proceed?
- Consequences of heated cargo tanks adjacent to treated ballast tanks
- Additional pressure (and training) for the crew
- Guidance from IMO currently unclear and open to "interpretation" by local PSC
- Concerns regarding various operational regions

