

MEDITERRANEAN ACTION PLAN (MAP) REGIONAL MARINE POLLUTION EMERGENCY RESPONSE CENTRE FOR THE MEDITERRANEAN SEA (REMPEC)

Regional Workshop on Ratification and Effective Implementation of MARPOL Annex VI

REMPEC/WG.44/8/Rev.1 Date: 7 December 2018

Original: English

Valletta, Malta, 11-13 December 2018

Agenda Item 8

DRAFT TECHNICAL AND FEASIBILITY STUDY TO EXAMINE THE POSSIBILITY OF DESIGNATING THE MEDITERRANEAN SEA, OR PARTS THEREOF, AS SOX ECA(S) UNDER MARPOL ANNEX VI

Note by the Secretariat

SUMMARY				
Executive Summary:	This document presents the draft technical and feasibility study to examine the possibility of designating the Mediterranean Sea, or parts thereof, as SOx ECA(s) under MARPOL Annex VI, as prepared pursuant to Specific Objective 15 of the Regional Strategy (2016-2021).			
Action to be taken:	Paragraph 16			
Related documents:	UNEP(DEPI)/MED IG.22/28, UNEP(DEPI)/MED IG.23/23, REMPEC/WG.44/INF.3/Rev.1, REMPEC/WG.44/INF.4/Rev.1			

Background

1 The Regional Strategy for Prevention of and Response to Marine Pollution from Ships (2016-2021), hereinafter referred to as the Regional Strategy (2016-2021), which was adopted by the Nineteenth Ordinary Meeting of the Contracting Parties to the Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean ("the Barcelona Convention") and its Protocols (COP 19) held in Athens, Greece from 9 to 12 February 2016, addresses the issue of the prevention of air pollution from ships in Specific Objectives 1 and 15 (UNEP(DEPI)/MED IG.22/28).

2 The Twentieth Ordinary Meeting of the Contracting Parties to the Barcelona Convention and its Protocols (COP 20), which was convened in Tirana, Albania from 17 to 20 December 2017, agreed to include the following activity in the Programme of Work and Budget for 2018-2019 of the Mediterranean Action Plan (MAP) of the United Nations Environment Programme (UN Environment), also referred to as UN Environment/MAP:

- Examine the possibility of designating the Mediterranean Sea, or parts thereof, as sulphur oxides (SOx) Emission Control Area(s) (ECA(s)) under Annex VI to the International Convention for the Prevention of Pollution from Ships (MARPOL) and effectively implement the existing energy efficiency measures.

3 The expected deliverables are: roadmap put in place for the preparation of a submission to the International Maritime Organization (IMO) to designate as a SOx ECA in certain areas of the Mediterranean Sea requiring specific environmental protection as well as possible further steps explored (UNEP(DEPI)/MED IG.23/23).

In this context and, pursuant to Specific Objective 15 of the Regional Strategy (2016-2021), the Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC) hired Energy and Environmental Research Associates, LLC. (EERA), hereinafter referred to as the Consultant, to provide consultancy services for the preparation of a technical and feasibility study to examine the possibility of designating the Mediterranean Sea, or parts thereof, as SOx ECA(s) under MARPOL Annex VI, hereinafter referred to as the Technical and Feasibility Study.

5 The main objective of the Technical and Feasibility Study, which is financed by the Mediterranean Trust Fund (MTF) as well as the IMO's Integrated Technical Cooperation Programme (ITCP) and a voluntary contribution from the Government of Italy, is to examine if it is appropriate, at the current stage, to put in place a road map for preparation of a submission to the IMO to designate as a SOx ECA in certain areas of the Mediterranean Sea requiring specific environmental protection and to explore possible further steps. In doing so, the Technical and Feasibility Study will also enable REMPEC to assist the Mediterranean coastal States, which so request, either individually or collectively, to prepare a submission to the IMO proposing the designation as a SOx ECA of the area or areas of the Mediterranean Sea identified.

SOx ECA(s) Technical Committee of Experts

6 Through REMPEC Circular Letters No. 08/2016 and 09/2016, dated 15 March 2016 and 15 April 2016, respectively, the Centre invited all REMPEC Governmental Focal Points to nominate jointly and, in consultation with REMPEC Prevention Focal Points, their representatives serving on the SOx ECA(s) Technical Committee of Experts established pursuant to Specific Objective 15 of the Regional Strategy (2016-2021).

7 To date, REMPEC has received nominations from twenty (20) out of the twenty-two (22) Contracting Parties to the Barcelona Convention. The list of representatives serving on the SOx ECA(s) Technical Committee of Experts, as of 7 December 2018, is presented in **Appendix I** to the present document.

8 Specific Objective 15 of the Regional Strategy (2016-2021) tasks the SOx ECA(s) Technical Committee of Experts to carry out the Technical and Feasibility Study. With a view to facilitating the implementation of this activity, the SOx ECA(s) Technical Committee of Experts is expected, through correspondence coordinated by the Secretariat, to:

- .1 **Phase 1a**: review the draft Terms of Reference (ToRs) for the provision of consultancy services for the preparation of the Technical and Feasibility Study, as prepared by the Secretariat;
- .2 **Phase 1b**: review a draft generic questionnaire in support of the Technical and Feasibility Study, as prepared by the Secretariat;
- .3 **Phase 2**: review the draft Technical and Feasibility Study prepared by the Consultant, in consultation with the Secretariat; and
- .4 **Phase 3**: review the revised draft Technical and Feasibility Study together with draft recommendations, including a draft road map as well as an initial draft submission to the IMO, prepared by the Consultant, in consultation with the Secretariat.

9 Phase 1a, which enabled the SOx ECA(s) Technical Committee of Experts to review and agree upon the ToRs, as set out in document REMPEC/WG.44/INF.3/Rev.1, was launched on 9 December 2017 and was completed on 1 February 2018.

10 Following the launch of a Call for Formal Tenders for the provision of consultancy services for the preparation of the Technical and Feasibility Study on 29 March 2018, through the IMO Procurement platform, the Consultant was recruited by REMPEC on 7 June 2018.

11 A kick-off meeting was convened with the Consultant through video-conference on 13 June 2018 to discuss the content of the reference documents to be analysed, the scope of the assignment, as well as to collect all required information for the completion of this consultancy and to agree on the method of work and communication channel. 12 Phase 1b was aimed at defining the geopolitical stands of the Contracting Parties to the Barcelona Convention on the ratification and implementation of MARPOL Annex VI as well as on the possibility of designating the Mediterranean Sea, or parts thereof, as SOx ECA(s) under MARPOL Annex VI. In this regard, the SOx ECA(s) Technical Committee of Experts reviewed a draft generic questionnaire, as prepared by the Secretariat on 16 April 2016. However, one (1) representative serving on the SOx ECA(s) Technical Committee of Experts considered that there was no added value for the questionnaire, as drafted, for consideration prior to carrying out the Technical and Feasibility Study. Therefore, the Secretariat decided to put the questionnaire on hold until the time the draft Technical and Feasibility Study would be prepared.

13 During Phase 2, the draft Technical and Feasibility Study prepared by the Consultant, in consultation with the Secretariat, which is presented in **Appendix II** to the present document, was submitted to the SOx ECA(s) Technical Committee of Experts on 1 October 2018 for review and comments by 5 November 2018. The Secretariat reminded the SOx ECA(s) Technical Committee of Experts to have due regard to the ToRs, especially paragraph 9.3 (Assignment) thereof, when reviewing and providing general as well as specific comments. The deadline for comments was extended to 15 November 2018 with a view to allowing more time for the SOx ECA(s) Technical Committee of Experts to review and provide comments accordingly. As of 7 December 2018, six (6) comments were received through the SOx ECA(s) Technical Committee of Experts, which are presented as appendices to document REMPEC/WG.44/INF.4/Rev.1.

Next steps

14 The SOx ECA(s) Technical Committee of Experts will be requested to review the revised draft Technical and Feasibility Study together with draft recommendations, including a draft road map as well as an initial draft submission to the IMO, which will be prepared by the Consultant, in consultation with the Secretariat taking into consideration the comments made by the Contracting Parties to the Barcelona Convention, through the SOx ECA(s) Technical Committee of Experts as well as during the Meeting.

15 Once reviewed and validated by the SOx ECA(s) Technical Committee of Experts, the Technical and Feasibility Study together with recommendations on the possibility of designating the Mediterranean Sea, or parts thereof, as SOx ECA(s) under MARPOL Annex VI, including a draft road map as well as an initial draft submission to the IMO for such a designation, if any, will be submitted to the Thirteenth Meeting of the Focal Points of REMPEC, to be tentatively held in Malta from 11 to 13 June 2019, for its review and recommendations.

Actions requested by the Meeting

16 **The Meeting is invited to**:

- .1 **take note** of the information provided in the present document; and
- .2 **comment**, as appropriate.

APPENDIX I

List of representatives serving on the SOx ECA(s) Technical Committee of Experts as of 7 December 2018

Contracting Party to the Barcelona Convention	Name	Organisation
Albania	Mr Elson THANA	Ministry of Infrastructure and Energy
Bosnia & Herzegovina	Dr Simone MILANOLO	Hydro-Engineering Institute Sarajevo (HEIS)
Croatia	Ms Ivana MAROVIĆ GUGIĆ	Ministry of the Sea, Transport and Infrastructure
	Mr Gordan DOŠEN	Ministry of Environment and Energy
Cyprus	Mr Michalis KANIAS	Ministry of Transport Communications and Works
Egypt	Chemist. Moustafa Mohamed Mourad	Egyptian Environmental Affairs Agency (EEAA)
European Union	Ms Rosa ANTIDORMI	Directorate-General for the Environment, European Commission
France	Ms Cécile RAFAT	Ministère de la Transition écologique et solidaire
	Ms Thamara VIEIRA DA ROCHA	Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique (CITEPA)
	Ms Laurence ROUIL	Institut national de l'environnement industriel et des risques (INERIS)
	Mr Antoine LAFITTE	Plan Bleu
Greece	Commander (ENG) H.C.G. Aikaterini STAMOU	Ministry of Maritime Affairs and Insular Policy
	Mr Konstantinos FRANTZIKINAKIS	Ministry of Maritime Affairs and Insular Policy
Israel	Eng. Asher KADOSH	Ministry of Transport
Italy	Dott. Roberto GIANGRECO	Ministero dell'Ambiente, della Protezione della Natura e del Mare
Libya	Mr Mohamed Salem Abdullatif Ahmed ESHWERF	Environment General Authority
Malta Capt. Richard GABRIELE Auth		Authority for Transport in Malta
Monaco	Mr Pierre BOUCHET	Département de l'Equipement, de l'Environnement et de l'Urbanisme
Montenegro	Ms Olivera KUJUNDZIC	Ministry for Sustainable Development and Tourism
Могоссо	Mlle. Khaoula LAGRINI	Secrétariat d'Etat chargé du Développement Durable
Slovenia	Mr Arturo STEFFE	Slovenian Maritime Administration

REMPEC/WG.44/8/Rev.1 Appendix I Page 2

Spain	Mr Pablo PEDROSA REY	Ministerio de Fomento	
Syrian Arab Republic	Chem. Fathia MOHAMMAD	Ministry of state for environmental affairs	
	Eng. Ali DAYOUB	Ministry of transportation	
Tunisia	Mr Alaya SAGAAMA	Agence Nationale de Protection de l'Environnement	
Turkey	Ms Rabia ZAFER	Ministry of Environment and Urbanization	
	Ms Canan Esin KOKSAL	Ministry of Environment and Urbanization	
	Ms Arzu ERDOGAN	Ministry of Environment and Urbanization	
	Mr Hakan AKYILDIZ	Ministry of Transport, Maritime Affairs and Communications	
	Mr Turgay BUYURAN	Ministry of Transport, Maritime Affairs and Communications	

APPENDIX II

Draft technical and feasibility study to examine the possibility of designating the Mediterranean Sea, or parts thereof, as SOx ECA(s) under MARPOL Annex VI

DRAFT: A Technical and Feasibility Study to Examine the Possibility for Designating the Mediterranean Sea or Parts Thereof as a SOx Emission Control Area Under MARPOL Annex VI

Draft Submittal Date 26 September 2018

Submitted by

Energy and Environmental Research Associates, LLC 2 Babcock Farms Lane Pittsford, New York 14534 USA

and

Finnish Meteorological Institute Erik Palménin aukio 1 Helsinki, Finland FI-00560

Acknowledgement

This activity is financed by the Mediterranean Trust Fund (MTF), the Integrated Technical Cooperation Programme (ITCP) of the International Maritime Organization (IMO), and a voluntary contribution from the Government of Italy. This project is implemented by the Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC). Parts of the analysis benefited from resources provided by the Finnish Meteorological Institute (FMI) directly or through related research contracts, and additional resources provided by Energy and Environmental Research Associates (EERA).

This study is the collaborative product of staff at EERA and FMI. Principal investigators on the project include James J. Corbett, Edward Carr, and James Winebrake of EERA, and Jukka-Pekka Jalkanen and Mikhail Sofiev of FMI. Contributing authors include Lasse Johansson, and Julia Palamarchuk.

The suggested citation for this report is:

(TO BE ADDED FOR FINAL REPORT)

Table of Contents

Acknow	edgement	i
Table of	Contents	ii
Table of	Tables	iv
Table of	Figures	v
List of A	cronyms and Abbreviations	vii
1 Exe	cutive Summary of Mediterranean Technical and Feasibility Study	1
1.1	Overview of Project	1
1.1	1 Description of Mediterranean Sea Area Domain and Shipping Activity	1
1.1	2 Background and Overview of Regulatory Compliance Prospects	2
1.1	3 Technical and Feasibility Report Organization	3
1.2	Primary Findings and Results	3
1.2	1 Meeting MARPOL VI global and Med ECA standards increases fuel/technology costs	3
1.2	2 Mediterranean ECA Provides Reductions in SOX and PM2.5 Emissions	4
1.2	Mediterranean ECA Cost-effectiveness for Shins Is Reported by Target and Outcome	J 6
1.2	5 Combined MARPOL VI and Med ECA Cost-effectiveness Appears Similar to Prior ECAs	0
2 Ma	tivation and Project Summary	
2.1	Mediterranean Study Area	8
2.2	Background and Overview of Regulatory Compliance Prospects	9
3 Fue	and Emissions Modeling and Fate and Transport Analysis	10
3.1	Fuel Use in the Mediterranean Sea (2016 and 2020)	10
3.2	Criteria and CO ₂ Pollution Emissions in the Mediterranean Sea (2016 and 2020)	11
3.2	1 Geographic Distribution of Shipping Emissions in the Mediterranean Sea Area	11
3.2	2 National EEZ Allocation of Emissions in the Mediterranean Sea Area	14
3.3	Comparison with Previous Emission Inventories	16
3.4	Multi-Year Scenarios Fuel Use and Emissions (2020, 2030, 2040, 2050)	16
3.4	1 Total Fuel Consumption	16
3.4	2 Criteria and GHG Pollution Emissions	17
3.5	Fate and Transport for 2020 Regulatory Scenarios	19
3.5	1 Change in Particulate Matter (PM _{2.5}) Concentration	19
3.5	2 Change in Wet and Dry Deposition	19
3.5	3 Change in Aerosol Optical Depth	23
4 Ass	essment of Health and Environmental Mitigation Benefits	25
4.1	Health Benefits Assessment for 2020 Scenarios	25
4.1	Avoided Cardiovascular and Lung Cancer Mortality	25
4.1	2 Childhood Asthma Morbidity	26
4.1	Summary of Evaluated Health Benefits	26
4.1	2 Country-Specific Estimates of Health Benefits	27

	4.2	Other Benefits Associated with a Mediterranean ECA	27
5	Econ	omic and Technical Feasibility Assessment	29
	5.1	Estimated Compliance Costs for 2020 Mediterranean Policy Scenarios	29
	5.2	Exhaust Gas Cleaning Adoption Analysis	29
	5.3	Alternative Fuels	31
	5.4	Comparison of Vessel-Specific Costs	33
	5.5 5.5.1 5.5.2	Benefit-Cost Analysis Cost effectiveness analysis Mortality benefit-cost analysis (Lung Cancer and Cardiovascular causes)	34 34 35
6	Сот	parison with other ECA Assessment and Summary of Other Results	36
	6.1	Comparison with other ECA Assessments	36
	6.2	Survey results on national perspective and preferences	38
7	Met	hods and Data	39
	7.1	Emissions Modeling	39
	7.1.1	Fuel Usage	39
	7.1.2	Future Scenarios	40
	7.2	Emissions Fate and Transport and Exposure Modeling	40
	7.3	Health Related Impacts Modeling	41
	7.4	Economic Feasibility Assessment	43
	7.4.1	Fuel Prices	43
	7.4.1	Cost Methodology for MARPOL VI and Med ECA Scenarios	45
	7.4.2	Cost methodology for evaluating technology and advanced fuels adoption	46
	7.4.3	Methodology for partial valuation of benefits (avoiding premature death)	47
	7.5	Uncertainty and Limitations	50
	7.5.1	Emissions Modeling	50
	7.5.2	Air quality modeling	51
	7.5.3	Exposure and Health	51
	7.5.4	Fuel pricing data	51
	7.5.5	Regional Delineation	51
8	Refe	rences	53

Table of Tables

Table 1. Estimated fuel-related costs in 2020 under different Mediterranean regulatory and compliant	ce ⁄
Table 2. Estimated SOx and DM _ omissions under different Mediterranean regulatory and compliance	4 0
scenarios	5
Table 3. Cost-effectiveness of quantified benefits	6
Table 4: Baseline year (2016) fuel usage and projected 2020 fuel usage under MARPOL VI and Med EC	CA.
scenarios	10
Table 5: Fuel mix percentages for the Mediterranean Sea Area in 2016 and under MARPOL VI and Me	d
ECA scenarios	10
Table 6: Baseline and 2020 scenario criteria and GHG pollution emissions	11
Table 7: Summary of total fuel usage and criteria and GHG emissions for the 2016 baseline, MARPOL	VI,
and Med ECA scenarios	13
Table 8. National Allocation of Shipping SOx Emissions in Mediterranean Sea Area	14
Table 9. National Allocation of Shipping PM _{2.5} Emissions in Mediterranean Sea Area	14
Table 10. National Allocation of Shipping NOx Emissions in Mediterranean Sea Area	15
Table 11. National Allocation of Shipping CO ₂ Emissions in Mediterranean Sea Area	15
Table 12: Comparison of current inventory with IMO GHG3 and previous inventories	16
Table 13. Summary of future year estimated fuel consumption in the Mediterranean Sea Area, by	
scenario and fuel type	17
Table 14. Summary of future year estimated fuel use and pollutant emissions in the Mediterranean Se	ea
Area, by scenario	17
Table 15. Summary of health benefits evaluated for the Med ECA (model year 2020)	26
Table 16. Regional allocation of estimates for health benefits	27
Table 17. Summary of proxies for other benefits associated with Med ECA	28
Table 18. Estimated costs under different Mediterranean regulatory and compliance scenarios	29
Table 19. Fleet counts considered for exhaust gas cleaning technology.	30
Table 20. Cost analysis relating scrubber capital costs and investment years to the percent of the fleet	t
using scrubbers	30
Table 21. Use of scrubbers by vessel type under a Med ECA scenario.	31
Table 22. Summary of alternative fuel economic feasibility analysis for major vessel types in the	
Mediterranean Sea Area	32
Table 23. Fleet counts considered for alternative fuel replacement, and the number that could reduce	ۆ
ECA compliance costs.	. 32
Table 24. Cost analysis relating LNG price and LNG-MGO price differential to the percent of the fleet	
adopting alternative fuel	33
Table 25. Summary of average annual compliance cost per vessel by type	33
Table 26. Cost-effectiveness of quantified benefits	34
Table 27. Cost-effectiveness comparison with North American ECA ¹	37
Table 28: STEAM Model vessel power, tonnage, and count growth estimates used for future scenarios	s 40
Table 29: Cardiovascular and lung cancer disease mortality, and childhood asthma morbidity rates	42
Table 30: Fuel prices used in this analysis	45
Table 31. Summary of cost elements used to evaluate scrubber economic feasibility	.46
Table 32. Summary of quantified benefits that may be evaluated using cost-effectiveness	. 49
Table 33. International Income-Adjusted Estimates of the VSL for Mediterranean Sea Area nations	. 50
Table 34. Mortality-weighted VSL for Mediterranean coastal nations	. 50

Table of Figures

Figure 1: arties to Barcelona Convention and proposed Mediterranean Sea Sulphur ECA (Med ECA) 2
Figure 2. Fuel-related costs in 2020 under different Mediterranean regulatory compliance scenarios4
Figure 3. Change in SOx and PM ₂₅ emissions under different Mediterranean regulatory scenarios
Figure 4. Change in lung cancer and cardiovascular mortality, and childhood asthma morbidity
Figure 5. Control cost-effectiveness of SOx and PM2.5 reductions based on prices in this study
Figure 6. Cost-effectiveness of health outcomes in terms of avoided premature mortality and avoided
childhood asthma
Figure 7. Summary comparison of cost-effectiveness metrics for this study (combining MARPO VI and
Med ECA measures) with U.S. SOx and PM data from the Proposal to Designate an Emission Control Area
for North America
Figure 8: Parties to Barcelona Convention and proposed Mediterranean Sea Sulphur ECA (Med ECA) 8
Figure 9: Baseline 2016 HFO fuel use11
Figure 10: SOx emissions under 2016 baseline, 2020 MARPOL VI, and 2020 Med ECA scenarios
Figure 11: Geographic distribution of reduction in PM _{2.5} emissions (kg) between MARPOL VI (0.5% S) and
Med ECA (0.1% S)
Figure 12: STEAM modeled reduction in total SOx emissions in the Mediterranean Sea from 2016
baseline, to MARPOL VI (0.5% S) and Med ECA (0.1% S) scenarios
Figure 13. Multi-year estimates of annual fuel consumption in the Mediterranean Sea Area16
Figure 14. Multi-year estimates of SOx emissions under future compliance scenarios for the
Mediterranean Sea Area17
Figure 15. Multi-year estimates for PM2.5, NOx, and CO2 from shipping in Mediterranean Sea Area18
Figure 16: Difference in PM _{2.5} concentration between MARPOL VI and Med ECA scenarios
Figure 17: Decrease in annual wet sulphate deposition between MARPOL VI and Med ECA20
Figure 18: Percent decrease in annual wet sulphate deposition between MARPOL VI and Med ECA 20
Figure 19: Decrease in annual dry sulphate deposition between MARPOL VI and Med ECA21
Figure 20: Percent decrease in annual dry sulphate deposition between MARPOL VI and Med ECA 21
Figure 21: Decrease in annual wet PM_{Total} deposition between MARPOL VI and Med ECA22
Figure 22: Percent decrease in annual wet PM_{Total} deposition between MARPOL VI and Med ECA
Figure 23: Change in annual dry PM_{Total} deposition between MARPOL VI and Med ECA23
Figure 24: Percent change in annual dry PM _{Total} deposition between MARPOL VI and Med ECA23
Figure 25: Percent Change in aerosol optical depth (PM species) between MARPOL VI and Med ECA 24
Figure 26: Combined avoided lung cancer and cardiovascular mortality with Med ECA25
Figure 27: Avoided childhood asthma morbidity with Med ECA26
Figure 28. Summary graphs of ECA cost sensitivity to fuel price for non-ECA (higher-sulphur) fuels, and
scrubber adoption: (a) cost difference between switching from MARPOL VI global fuel to Med ECA fuel;
and (b) additional cost to comply with Med ECA including potential economically feasible adoption of
scrubber technology
Figure 29. Control cost-effectiveness of SOx and PM2.5 reductions based on prices in this study
Figure 30. Cost-effectiveness of health outcomes in terms of avoided premature mortality and avoided
childhood asthma
Figure 31. Comparison of Med ECA cost per avoided mortality and the Mediterranean weighted VSL 35
Figure 32. Summary Comparison of cost-effectiveness metrics for this study (combining MARPO VI and
Med ECA measures) with U.S. SOx and PM data from the Proposal to Designate an Emission Control Area
for North America
Figure 33: Schematic representation of the STEAM/SILAM system for air quality research problems41

Figure 34: Bunker prices for marine bunker fuels from 2009 to 2018, resampled to mean weekly prices,
in 2015 USD/MT
Figure 35: Price ratio of MGO to IFO380, IFO180, and MDO45

List of Acronyms and Abbreviations

CO ₂	Carbon Dioxide
ECA	Emission Control Area (contextually including SOx Emission Control Area or SECA)
EERA	Energy and Environmental Research Associates, LLC
EGCS	Exhaust Gas Cleaning System (mainly termed in this study as "scrubber")
FMI	Finnish Meteorological Institute
GHG3	Third IMO Greenhouse Gas Study 2014
HFO	Heavy Fuel Oil (Residual fuel byproduct and or blends including IFO 380, IFO 180, etc.)
IHO	International Hydrographic Organization
IMO	International Maritime Organization
k	Thousands (as in Thousands of Dollars)
kW	Kilowatt
kWh	Kilowatt-hour
LNG	Liquefied Natural Gas
Μ	Millions (as in Millions of Dollars)
MARPOL VI	IMO International Convention for the Prevention of Pollution from Ships, Annex VI (Global
	fuel-sulphur limit of 0.5% S)
MDO	Marine Distillate Oil (Including blended or refined products meeting MARPOL VI 0.5% S
Med ECA	Mediterranean Emissions Control Area (Regional fuel-sulphur limit of 0.1% S)
MGO	Marine Gas Oil (Including refined products meeting ECA fuel limits of 0.1% S)
MT	Metric Tonnes
MMT	Million Metric Tonnes
NOx	Oxides of Nitrogen
PM (PM _{2.5})	Particulate Matter (Particulate Matter 2.5µ or smaller)
REMPEC	Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea
SECA	SOx Emission Control Area (in this report referred generally as ECA)
STEAM	Ship Traffic Emissions Assessment Model
SOx	Oxides of Sulphur
U.S.	United States
VSL	Value of a statistical life (or monetary value to reduce risk of a statistical premature death)

Executive Summary of Mediterranean Technical and Feasibility Study

This report presents the [DRAFT] Technical and Feasibility Study conducted for the Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC) by a collaborative team from Energy and Environmental Research Associates (EERA) and the Finnish Meteorological Institute (FMI). We find that compliance with 0.1% sulphur (S) fuel limits would produce additional reductions of emissions over a global 0.5% S fuel standard in 2020. We quantify these reductions and expected increased costs for fleet compliance through fuel switching or alternate compliance approaches including exhaust gas cleaning systems (scrubbers). We evaluate potential benefits of additional emissions reductions to Mediterranean nations in avoided human health and environmental impacts.

1.1 Overview of Project

1

REMPEC tasked EERA to examine the possibility of designating the Mediterranean Sea or parts thereof as SOx Emission Control Area(s) under Annex VI of the International Convention for the Prevention of Pollution from Ships. EERA teamed with FMI to collaborate on activity-based modeling of ship fuel consumption, combustion emissions, and regional pollution fate and transport. FMI provided activitybased shipping emissions fuel consumption estimates and emissions estimates for a base year of 2016 and for future years 2020, 2030, 2040, and 2050. Vessel modeling was informed by 2016 direct vessel observations using Automated Identification System (AIS) data, used the state-of-art Ship Traffic Emissions Assessment Model (STEAM), which was the model chosen for the Third IMO Greenhouse Gas Study 2015 (GHG3) and updated for current research including a 2018 peer-reviewed journal publication evaluating potential impact of global implementation of MARPOL VI fuel-sulphur limits on health and environment. EERA used pollutant exposure and deposition data from the FMI fate and transport model to estimate changes in health outcomes, namely premature mortality and childhood asthma morbidity. EERA also evaluated the fuel and emissions summaries to consider technical and economic feasibility, to guantify compliance costs, and to describe the cost-effectiveness of a SOx Emission Control Area. Work products are intended to provide decision-support information regarding whether and how to mitigate ship emissions in service of regional environmental and human health and maritime stewardship in the Mediterranean Sea.

1.1.1 Description of Mediterranean Sea Area Domain and Shipping Activity

The Mediterranean Sea Area is an important region for international shipping and commercial navigation. The Mediterranean Sea represents approximately 0.7% of navigable seas and oceans, and Mediterranean ship traffic accounts for about 7% of global shipping activity, energy use, and emissions. More than 30,000 vessels are observed to operate annually in the Mediterranean Sea Area. Based on this work, shipping CO₂ emissions represent about 10% of REMPEC nations' CO₂ inventories, as reported to the UNFCCC.

The area proposed for ECA designation, and modeled in this study, is illustrated in Figure 1. The area of the proposed ECA follows the International Hydrographic Organization (IHO) definition of the Mediterranean Sea¹ as being bounded on the southeast by the entrance to the Suez Canal, on the northeast by the entrance to the Dardanelles, delineated as a line joining Mehmetcik and Kumkale lighthouses, and to the west by the meridian passing through Cap Spartel lighthouse, also defining the western boundary of the Straits of Gibraltar. The waters of the proposed ECA are bounded by the 22 parties to the Barcelona Convention, which include Albania, Algeria, Bosnia and Herzegovina, Croatia,

¹ https://www.iho.int/iho_pubs/standard/S-23/S-23_Ed3_1953_EN.pdf

Cyprus, Egypt, France, Greece, Israel, Italy, Lebanon, Libya, Malta, Monaco, Montenegro, Morocco, Slovenia, Spain, Syria, Tunisia, Turkey, and the European Community.

Figure 1: arties to Barcelona Convention and proposed Mediterranean Sea Sulphur ECA (Med ECA)

1.1.2 Background and Overview of Regulatory Compliance Prospects

International ship power systems currently consume mainly petroleum-based fuel products and byproducts, with limited use of liquefied natural gas (LNG). Most of the fleet consumes residual fuel, also known as heavy fuel oil (HFO), which includes several grades of blended petroleum byproducts of refining (1). Current limits prescribed under the Convention on Prevention of Maritime Pollution, Annex VI (MARPOL VI) will require marine vessels to adopt fuels meeting a global limit of 0.5% S in 2020. This study models default compliance with MARPOL VI to result from a switch from non-compliant fuel (average 2.4% S) to MARPOL VI compliant (0.5% S) fuel. All future year scenarios consider technical and economic feasibility of a potential Mediterranean Emission Control Area (Med ECA) to be compared with conditions defined using MARPOL VI compliant fuel.

In considering a Med ECA, compliance alternatives modeled in this technical and feasibility study begin by assuming a switch from MARPOL VI compliant fuel to Med ECA complaint fuel. In other words, the Med ECA would result in a shift from 0.5% S to 0.1% S marine fuel. Recognizing that ECA compliance can be achieved through alternative compliance mechanisms, this study considers these mainly as part of their economic feasibility; fleet operators would be expected to adopt compliance alternatives to fuel switching where the long-run costs of ECA compliance were reduced. Alternative approaches to Med ECA compliance consider adoption of exhaust abatement technology or advanced fuel alternatives. This study models onboard sulphur scrubbers, also termed exhaust gas cleaning systems (EGCS), as the primary exhaust abatement technology to meet lower-sulphur limits of a Med ECA. This study models LNG as the advance fuel alternative to meet lower-sulphur limits of a Med ECA. Acknowledging that other technologies and fuels may be specified, this study utilizes an analytical framework that can be applied to more specifically investigate other compliance strategies (e.g., various scrubber designs, methanol, hydrogen or other marine fuel-power combinations).

This study uses STEAM to model the activity-based fuel consumption and emissions of over 30,000 vessels operating annually in the Mediterranean Sea. Informed by Ship Automated Identification System

(AIS) for the year 2016, the STEAM model integrates vessel activity, technology and design characteristics, and fuel type inputs to estimate vessel-specific energy requirements, fuel consumption, and emissions. These estimates are aggregated by vessel type and within the Mediterranean geographic domain to produce annual fuel and emissions estimates for a base year 2016. STEAM also produces a set of future-year estimates for 2020, 2030, 2040, and 2050, employing assumptions about future fleet demand, vessel economies of scale, improvements in fuel economy, and fleet replacement rates.

1.1.3 Technical and Feasibility Report Organization

The report is organized in the following sections. Section 1 provides an executive summary. Section 2 resents an overview of the project. Section 3 presents fuel and emissions modeling results. Section 4 presents an assessment of health and environmental benefits. Section 5 presents the economic and technical feasibility assessment. Section 6 performs a cost-effectiveness comparison of prior studies proposing ECA regions with combined actions (MARPOL VI + Med ECA compliance) in the Mediterranean Sea Area. Section 7 presents detailed methodologies and data supporting the analysis. Section 8 presents references.

1.2 Primary Findings and Results

This study evaluates the case for an IMO Emission Control Area in the Mediterranean Sea Area (Med ECA), as defined by the International Hydrographic Organization (2). Vessels operating in this region use 19 million metric tons (MMT) fuel annually at an estimated cost in 2016 of \$9.9 Billion. Costs to adopt fuels meeting MARPOL VI Global standards in 2020 are estimated to cost approximately \$4 Billion more per year. Additional costs to adopt fuels meeting potential Med ECA standards in 2020 are estimated to be \$1.8 Billion per year over compliance costs for the MARPOL VI global. When considering the economic adoption of exhaust gas cleaning systems (scrubbers), compliance with Med ECA standards may cost a bit less, estimated to be \$1.2 Billion more than MARPOL VI global compliance costs.

The associated benefits of implementing Med ECA standards include but may not be limited to fewer health impacts (mortality and morbidity), reduced deposition/discharge of acidifying combustion products, and improved visibility (less haze) in some locations. Geospatial distribution of impacts with no action and the benefits of a Med ECA vary according to the distribution of shipping activity, fate and transport of pollution/discharges, and distribution of exposed populations or vulnerable ecosystems. Reduced health impacts evaluated here include 1,100 avoided premature deaths annually, 2,300 fewer children impacted by pollution-related asthma annually, reductions in acidifying deposition, and reductions in aerosol optical depth related to haze effects. Primary findings are reported briefly with tables and charts that follow in the Executive Summary section. Detailed presentation of results are found in the main report.

1.2.1 Meeting MARPOL VI global and Med ECA standards increases fuel/technology costs Fuels compliant with Med ECA standards are expected to be more expensive than fuels compliant with the global MARPOL VI standards, and both of these fuels are more expensive than the dominant current residual fuels used by ships. Table 1 and Figure 2 summarize the estimated compliance costs related to adopting cleaner, compliant marine fuels. Also shown are compliance costs estimated to include investment and adoption of scrubber technologies where abating emissions while using higher-sulphur residual oil can offer cost savings over adopting fuels compliant with 0.1% S limits.

\$ Billion/y	Total Cost	Compliance
Policy Scenario		Cost
No Action (base fuel cost)	\$9.884	N/A
MARPOL VI (0.5% S)	\$13.849	\$3.965
Med ECA (0.1% S)	\$15.614	\$1.766
Med ECA (with scrubbers)	\$15.005	\$1.157

Note: these results are based on the fuel prices described in Section 7.4.1

Figure 2. Fuel-related costs in 2020 under different Mediterranean regulatory compliance scenarios

1.2.2 Mediterranean ECA Provides Reductions in SOx and PM_{2.5} Emissions

Lower-sulphur fuels that would be required under a Med ECA will result in lower emissions than current practices, and lower emissions compared with global MARPOL VI 2020 limits. SOx reductions are directly proportion to the shift from 0.5% to 0.1% fuel. Particulate matter (PM) reductions depend primarily on the fraction of ship-emitted PM that results from fuel-sulphur content.

MARPOL VI standards will reduce SOx emissions by approximately 75% from typical operations using residual fuels. Implementing Med ECA standards will achieve about a 95% reduction in SOx emissions form ships compared with current operations. PM reductions of about 51% are associated with MARPOL VI, and Med ECA standards would increase that to about 62% reduction in emissions. These results are shown in Table 2 and Figure 3.

_	SOx		PM _{2.5}	
MT per year Policy Scenario	Emissions	Reduction	Emissions	Reduction
No Action	681,000	N/A	97,500	N/A
MARPOL VI (0.5% S)	168,000	513,000	48,100	49,400
Med ECA (0.1% S)	35,800	132,200	36,700	11,400
Med ECA (with scrubbers)	35,800	132,200	36,700	11,400

Figure 3. Change in SOx and PM_{2.5} emissions under different Mediterranean regulatory scenarios

1.2.3 Mediterranean ECA Provides Additional Health Benefits Beyond MARPOL VI Global Emissions reductions by ships operating in the Mediterranean Sea Area will reduce concentrations of ambient air pollution and reduce exposure of PM_{2.5} for communities of people living in Mediterranean coastal nations. These improved exposure conditions are associated with additional health benefits, namely reduced risk of premature mortality and reduced risk of childhood asthma. Health benefits from Med ECA implementation are smaller than the avoided mortality and morbidity from adopting global MARPOL VI standards; this is expected given the emissions reduction from 0.5% S to 0.1% S is smaller than the first step to Med ECA conditions. This is a condition that will be likely for all ECA proposals considered after 2020 implementation of MARPOL VI.

Figure 4. Change in lung cancer and cardiovascular mortality, and childhood asthma morbidity

1.2.4 Mediterranean ECA Cost-effectiveness for Ships Is Reported by Target and Outcome Estimated compliance costs and abated emissions provide the necessary data to calculate the costeffectiveness of emissions control through MARPOL VI global standards and Med ECA limits (assuming fuel switch and including feasible scrubber adoption). These are presented in Table 3 and Figure 5. Estimated health benefits results can also be presented in terms of cost-effectiveness. These are presented in Table 3 and Figure 6.

Table 3. Cost-effectiveness of quantified benefits

Benefit Type	MARPOL VI	Med ECA	Med ECA with Scrubbers
Control Target			
Abated SOx emissions	\$7,730 /MT SOx	\$13,400 /MT SOx	\$8,750 /MT SOx
Abated PM2.5 emissions	\$80,300 /MT PM _{2.5}	\$155,000 /MT PM _{2.5}	\$101,000 /MT PM _{2.5}
Health Outcome			
Avoided mortality	\$0.263 M/Δ Mortality	\$1.580 M/Δ Mortality	\$1.035 M/Δ Mortality
Avoided childhood asthma	\$14 k/∆ Morbidity	\$763 k ∕∆ Morbidity	\$500 k/Δ Morbidity

Marginal Cost per Reduced Tonne SOx (\$/tonne)

Figure 5. Control cost-effectiveness of SOx and PM2.5 reductions based on prices in this study

Figure 6. Cost-effectiveness of health outcomes in terms of avoided premature mortality and avoided childhood asthma

1.2.5 Combined MARPOL VI and Med ECA Cost-effectiveness Appears Similar to Prior ECAs Costs to achieve Med ECA performance, considered by combining the MARPOL VI to Med ECA scenarios into one step, are very similar to the costs to achieve ECA performance in previously designated ECAs. Figure 7 illustrated this, as discussed in Section 0. This provides validating insight for this analysis. More generally, the agreement between prior ECA proposal cost-effectiveness and the cost-effectiveness of the combined MARPOL VI and Med ECA actions in the Mediterranean offer a decision support element with regard to potential designation of ECA regions after 2020.

Cost-effectiveness Comparison for Costs and Health Benefits

Figure 7. Summary comparison of cost-effectiveness metrics for this study (combining MARPO VI and Med ECA measures) with U.S. SOx and PM data from the Proposal to Designate an Emission Control Area for North America.

2 Motivation and Project Summary

The Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC) tasked Energy and Environment Research Associates (EERA) to examine the possibility of designating the Mediterranean Sea or parts thereof as SOx Emission Control Area(s) under Annex VI of the International Convention for the Prevention of Pollution from Ships. EERA has teamed with the Finnish Meteorological Institute (FMI) to collaborate on activity-based modeling of ship fuel consumption, combustion emissions, and regional pollution fate and transport. EERA evaluates the fuel and emissions summaries to consider technical and economic feasibility, to quantify compliance costs, and to describe benefits of a SOx Emission Control Area. Work products are intended to provide decision-support information regarding whether and how to mitigate ship emissions in service of regional environmental and human health and maritime stewardship in the Mediterranean Sea.

2.1 Mediterranean Study Area

The area proposed for ECA designation, and subsequently modeled in this study, is illustrated in Figure 8. The area of the proposed ECA follows the International Hydrographic Organization (IHO) definition of the Mediterranean Sea² as being bounded on the southeast by the entrance to the Suez Canal, on the northeast by the entrance to the Dardanelles, delineated as a line joining Mehmetcik and Kumkale lighthouses, and to the west by the meridian passing through Cap Spartel lighthouse, also defining the western boundary of the Straits of Gibraltar.

The waters of the proposed ECA are bounded by the 22 parties to the Barcelona Convention, which include Albania, Algeria, Bosnia and Herzegovina, Croatia, Cyprus, Egypt, France, Greece, Israel, Italy, Lebanon, Libya, Malta, Monaco, Montenegro, Morocco, Slovenia, Spain, Syria, Tunisia, Turkey, and the European Community.

Figure 8: Parties to Barcelona Convention and proposed Mediterranean Sea Sulphur ECA (Med ECA)

² https://www.iho.int/iho_pubs/standard/S-23/S-23_Ed3_1953_EN.pdf

2.2 Background and Overview of Regulatory Compliance Prospects

International ship power systems currently consume mainly petroleum-based fuel products and byproducts, with limited use of liquefied natural gas. Most of the fleet consumes residual fuel, also known as heavy fuel oil (HFO), which includes several grades of blended petroleum byproducts of refining (1). Current limits prescribed under the Convention on Prevention of Maritime Pollution, Annex VI (MARPOL VI) will require marine vessels to adopt fuels meeting a global limit of 0.5% Sulphur (0.5% S) in 2020. This study models default compliance with MARPOL VI to result from a switch from non-compliant fuel (average 2.4% S) to MARPOL VI compliant (0.5% S) fuel. All future year scenarios consider technical and economic feasibility of a potential Mediterranean Emission Control Area (Med ECA) to be compared with conditions defined using MARPOL VI compliant fuel.

In considering a Med ECA, compliance alternatives modeled in this technical and feasibility study begin by assuming a switch from MARPOL VI compliant fuel to Med ECA complaint fuel. In other words, the Med ECA would result in a shift from 0.5% S to 0.1% S marine fuel. Recognizing that ECA compliance can be achieved through alternative compliance mechanisms, this study considers these mainly as part of the economic feasibility; fleet operators would be expected to adopt compliance alternatives to fuel switching where the long-run costs of ECA compliance were reduced. Alternative approaches to Med ECA compliance consider adoption of exhaust abatement technology or advanced fuel alternatives. This study models onboard sulphur scrubbers, also termed exhaust gas cleaning systems (EGCS), as the primary exhaust abatement technology to meet lower-sulphur limits of a Med ECA. This study models liquefied natural gas (LNG) as the advance fuel alternative to meet lower-sulphur limits of a Med ECA. Acknowledging that other technologies and fuels may be specified, this study utilizes an analytical framework that can be applied to more specifically investigate other compliance strategies (e.g., various scrubber designs, methanol, hydrogen or other marine fuel-power combinations).

This study uses the Ship Traffic Emission Assessment Model (STEAM) to model the activity-based fuel consumption and emissions of over 30,000 vessels operating annually in the Mediterranean Sea. Informed by Ship Automated Identification System (AIS) for the year 2016, the STEAM model integrates vessel activity, technology and design characteristics, and fuel type inputs to estimate vessel-specific energy requirements, fuel consumption, and emissions. These estimates are aggregated by vessel type and within the Mediterranean geographic domain to produce annual fuel and emissions estimates for a base year 2016. The STEAM Model also produces a set of future-year estimates for 2020, 2030, 2040, and 2050, employing assumptions about future fleet demand, vessel economies of scale, improvements in fuel economy, and fleet replacement rates.

3 Fuel and Emissions Modeling and Fate and Transport Analysis

3.1 Fuel Use in the Mediterranean Sea (2016 and 2020)

Baseline (2016) fuel use inventories show total fuel use of 19.16 million tonnes in the Mediterranean Sea area (Table 4). STEAM modeling outputs indicate that improvements in power system fuel economy and vessel economies of scale result in 10.8% overall fuel consumption decreases in 2020 from 2016, accompanied by fuel switching.

The dominant fuel used in 2016 was HFO (78.8%). MDO was the next most commonly used fuel (17.2%), and MGO and LNG comprised a small fraction of overall fuel usage (2.8% and 1.3%, respectively). The STEAM model predicts that under MARPOL VI the Mediterranean Sea area overall fuel mix will switch to 95.5% MDO and 3.1% MGO, and 0.8% LNG. HFO fuel use falls to 0.6% under MARPOL VI conditions, and continues to be used by a small number of vessels currently equipped with exhaust gas cleaning systems (scrubbers).

Under the Med ECA scenario, the STEAM model estimates total fuel use equivalent to the MARPOL VI scenario, but changes to 97.7% MGO and 1% MDO fuel mix. HFO and LNG fuel usage is unchanged in the Med ECA scenarios compared to the MARPOL VI fuel consumption.

Table 4: Baseline year (2016) fuel usage and projected 2020 fuel usage under MARPOL VI and Med ECA scenarios

MT	MED 2016 Baseline	MARPOL VI 2020	Med ECA 2020
Total Fuel	19,160,000	17,100,000	17,100,000
MGO	542,000	522,000	16,700,000
MDO	3,290,000	16,340,000	164,000
HFO	15,090,000	99,900	94,700
LNG	243,000	141,000	138,000

Table 5: Fuel mix percentages for the Mediterranean Sea Area in 2016 and under MARPOL VI and Med ECA scenarios

	Pre-MARPOL VI		
Fuel Allocation	Baseline Fuel Mix	MARPOL VI Fuel Mix	Med ECA Fuel Mix
MGO	2.8%	3.1%	97.7%
MDO	17.2%	95.5%	1.0%
HFO	78.8%	0.6%	0.6%
LNG	1.3%	0.8%	0.8%

Geographically, fuel consumption is driven by regional shipping patterns. The highest fuel consumption is observed at the western end of the Mediterranean Sea at the entrance to the Straits of Gibraltar, in the central Mediterranean Sea off of the north coast of Tunisia, and at the eastern end of the Mediterranean Sea at the entrance to the Suez Canal. Relative fuel consumption patterns are unchanged in the various scenario years.

Figure 9: Baseline 2016 HFO fuel use

3.2 Criteria and CO₂ Pollution Emissions in the Mediterranean Sea (2016 and 2020) Baseline SOx and PM_{2.5} emissions are estimated to be 681,000 and 97,500 MT in 2016. Under the MARPOL VI scenario emissions of these species fall by 75.3% and 50.7% respectively. Emission inventory results under the Med ECA 2020 scenario for SOx and PM_{2.5} species are reduced by a further 78.7% and 23.7% compared to MARPOL VI 2020 (Table 6).

Table 6: Baseline	and 2020	scenario	criteria	and	GHG	pollution	emissions
						1	

MT	MED 2016 Baseline	MARPOL VI 2020	Med ECA 2020
Total SOx	681,000	168,000	35,800
Total PM _{2.5}	97,500	48,100	36,700
Total NOx	1,330,000	1,160,000	1,170,000
Total CO ₂	58,070,000	51,700,000	51,880,000

3.2.1 Geographic Distribution of Shipping Emissions in the Mediterranean Sea Area The geographic distribution of shipping emissions for a 2016 non-MARPOL VI baseline case, the MARPOL VI 2020 case, and the Med ECA 2020 case is shown in Figure 10. Figure 11 shows the avoided PM emissions in the region under the Med ECA 2020 case. Lastly, Figure 12 and Table 7 show the impacts of the Med ECA on emissions and fuel consumption numerically.

Figure 10: SOx emissions under 2016 baseline, 2020 MARPOL VI, and 2020 Med ECA scenarios

Figure 11: Geographic distribution of reduction in PM_{2.5} emissions (kg) between MARPOL VI (0.5% S) and Med ECA (0.1% S)

Figure 12: STEAM modeled reduction in total SOx emissions in the Mediterranean Sea from 2016 baseline, to MARPOL VI (0.5% S) and Med ECA (0.1% S) scenarios

Table 7: Summary of total fuel usage and criteria and GHG emissions for the 2016 baseline, MARPOL VI, and Med ECA scenarios

		Current Inventory					
	2016	2020 Marpol VI	2020 ECA				
Fuel Usage	19,160	17,100	17,100				
SOx	681	168	36				
РМ	98	48	37				
NOx	1,330	1,160	1,170				
CO2	58,070	51,700	51,880				

3.2.2 National EEZ Allocation of Emissions in the Mediterranean Sea Area

EERA also identified the national EEZ in which the above-mentioned emissions reductions occur. Table 8 through Table 11 present ship emissions allocated to nation EEZ in the Mediterranean Sea Area.

	2016 Baseline SOx		2020 MARPO	DL VI SOx	2020 Med ECA SOx	
Nation	680,780 MT	Percent	167,740 MT	Percent	35,830 MT	Percent
Albania	1,180	0.2%	400	0.2%	90	0.3%
Bosnia and Herzegovina*	0	0.0%	0	0.0%	0	0.0%
Cyprus	8,930	1.3%	2,420	1.4%	520	1.5%
Algeria	74,920	11.0%	15,690	9.4%	3,200	8.9%
Egypt	51,060	7.5%	11,710	7.0%	2,700	7.5%
Spain	113,080	16.6%	28,030	16.7%	5,980	16.7%
France	20,170	3.0%	6,450	3.8%	1,390	3.9%
Greece	155,110	22.8%	36,620	21.8%	7,670	21.4%
Croatia	11,720	1.7%	3,190	1.9%	670	1.9%
Israel	5,160	0.8%	1,820	1.1%	380	1.1%
Italy	159,440	23.4%	41,350	24.7%	8,820	24.6%
Lebanon	1,650	0.2%	570	0.3%	120	0.3%
Libya	13,240	1.9%	3,360	2.0%	770	2.1%
Morocco	2,130	0.3%	820	0.5%	180	0.5%
Monaco*	0	0.0%	0	0.0%	0	0.0%
Malta	10,990	1.6%	3,230	1.9%	750	2.1%
Montenegro	470	0.1%	200	0.1%	40	0.1%
Slovenia	70	0.0%	30	0.0%	10	0.0%
Syria	530	0.1%	170	0.1%	40	0.1%
Tunisia	34,960	5.1%	7,230	4.3%	1,490	4.2%
Turkev	15.970	2.3%	4.450	2.7%	1.010	2.8%

Table 8. National Allocation	of Shi	ipping SOx	Emissions	in	Mediterranean	Sea A	Area
------------------------------	--------	------------	-----------	----	---------------	-------	------

* Bosnia and Herzegovina and Monaco do not show any counts of emissions in their EEZs because of an artifact of the resolution used to model emissions

Table 9. National Allocation of Shipping PM_{2.5} Emissions in Mediterranean Sea Area

	2016 Baseline PM _{2.5}		2020 MARPO	L VI PM _{2.5}	2020 Med ECA PM _{2.5}	
Nation	97,490 MT	Percent	48,110 MT	Percent	36,740 MT	Percent
Albania	180	0.2%	110	0.2%	90	0.2%
Bosnia and Herzegovina*	0	0.0%	0	0.0%	0	0.0%
Cyprus	1,290	1.3%	690	1.4%	530	1.4%
Algeria	10,310	10.6%	4,480	9.3%	3,380	9.2%
Egypt	7,240	7.4%	3,380	7.0%	2,600	7.1%
Spain	16,360	16.8%	8,100	16.8%	6,200	16.9%
France	3,120	3.2%	1,850	3.8%	1,410	3.8%
Greece	21,820	22.4%	10,440	21.7%	7,960	21.7%
Croatia	1,690	1.7%	900	1.9%	690	1.9%
Israel	820	0.8%	510	1.1%	390	1.1%
Italy	23,140	23.7%	11,910	24.8%	9,100	24.8%
Lebanon	260	0.3%	160	0.3%	120	0.3%
Libya	1,850	1.9%	960	2.0%	740	2.0%
Morocco	340	0.3%	230	0.5%	170	0.5%
Monaco*	0	0.0%	0	0.0%	0	0.0%
Malta	1,770	1.8%	970	2.0%	760	2.1%
Montenegro	80	0.1%	60	0.1%	40	0.1%
Slovenia	10	0.0%	10	0.0%	10	0.0%
Syria	80	0.1%	50	0.1%	40	0.1%
Tunisia	4,800	4.9%	2,060	4.3%	1,560	4.2%
Turkey	2,330	2.4%	1,240	2.6%	950	2.6%

* Bosnia and Herzegovina and Monaco do not show any counts of emissions in their EEZ's because of an artifact of the resolution used to model emissions

	2016 Baseline NOx		2020 MARPOI	. VI NOx	2020 Med ECA NOx	
Nation	1,332,800 MT	Percent	1,161,780 MT	Percent	1,165,900 MT	Percent
Albania	3,050	0.2%	2,890	0.2%	2,870	0.2%
Bosnia and Herzegovina*	0	0.0%	0	0.0%	0	0.0%
Cyprus	18,420	1.4%	16,680	1.4%	16,850	1.4%
Algeria	133,750	10.0%	112,420	9.7%	112,680	9.7%
Egypt	92,300	6.9%	79,420	6.8%	79,840	6.8%
Spain	223,870	16.8%	192,840	16.6%	193,580	16.6%
France	46,650	3.5%	42,410	3.7%	42,360	3.6%
Greece	298,410	22.4%	259,900	22.4%	261,450	22.4%
Croatia	24,020	1.8%	21,680	1.9%	21,710	1.9%
Israel	11,800	0.9%	10,630	0.9%	10,780	0.9%
Italy	323,430	24.3%	286,630	24.7%	287,040	24.6%
Lebanon	3,780	0.3%	3,410	0.3%	3,440	0.3%
Libya	24,790	1.9%	23,610	2.0%	23,810	2.0%
Morocco	4,760	0.4%	4,530	0.4%	4,580	0.4%
Monaco*	0	0.0%	0	0.0%	0	0.0%
Malta	25,590	1.9%	21,050	1.8%	21,020	1.8%
Montenegro	1,360	0.1%	1,320	0.1%	1,300	0.1%
Slovenia	230	0.0%	200	0.0%	210	0.0%
Syria	1,200	0.1%	1,120	0.1%	1,110	0.1%
Tunisia	62,250	4.7%	51,700	4.5%	51,800	4.4%
Turkey	33,140	2.5%	29,340	2.5%	29,470	2.5%

Table 10. National Allocation of Shipping NOx Emissions in Mediterranean Sea Area

* Bosnia and Herzegovina and Monaco do not show any counts of emissions in their EEZ's because of an artifact of the resolution used to model emissions

Table 11. National Allocation of Shipping CO₂ Emissions in Mediterranean Sea Area

	2016 Baseline CO ₂		2020 MARPOL	VI CO2	2020 Med ECA CO ₂		
Nation	58,074,560 MT	Percent	51,889,720 MT	Percent	51,879,130 MT	Percent	
Albania	136,030	0.2%	128,700	0.2%	127,630	0.2%	
Bosnia and Herzegovina*	0	0.0%	0	0.0%	10	0.0%	
Cyprus	802,110	1.4%	748,390	1.4%	753,230	1.5%	
Algeria	5,563,940	9.6%	4,742,040	9.1%	4,733,790	9.1%	
Egypt	4,063,640	7.0%	3,553,590	6.8%	3,558,600	6.9%	
Spain	9,864,660	17.0%	8,731,260	16.8%	8,733,440	16.8%	
France	2,193,300	3.8%	2,047,780	3.9%	2,037,780	3.9%	
Greece	12,643,060	21.8%	11,255,350	21.7%	11,279,680	21.7%	
Croatia	1,077,100	1.9%	1,002,830	1.9%	1,000,830	1.9%	
Israel	579,260	1.0%	543,760	1.0%	549,310	1.1%	
Italy	14,257,030	24.5%	12,985,330	25.0%	12,957,330	25.0%	
Lebanon	181,710	0.3%	170,220	0.3%	170,830	0.3%	
Libya	1,032,640	1.8%	1,013,680	2.0%	1,018,060	2.0%	
Morocco	249,630	0.4%	244,930	0.5%	246,980	0.5%	
Monaco*	0	0.0%	0	0.0%	0	0.0%	
Malta	1,258,570	2.2%	1,084,220	2.1%	1,079,080	2.1%	
Montenegro	67,000	0.1%	66,080	0.1%	65,080	0.1%	
Slovenia	12,680	0.0%	11,800	0.0%	12,060	0.0%	
Syria	54,200	0.1%	51,810	0.1%	51,560	0.1%	
Tunisia	2,593,310	4.5%	2,181,020	4.2%	2,176,600	4.2%	
Turkey	1,444,690	2.5%	1,326,930	2.6%	1,327,250	2.6%	

* Bosnia and Herzegovina and Monaco do not show any counts of emissions in their EEZ's because of an artifact of the resolution used to model emissions

3.3 Comparison with Previous Emission Inventories

As part of our validation process, EERA compared our results with previous emissions estimates for the region. That comparison is shown in Table 12, which shows consistency of this work with previous studies (3).

	Current Inventory				"Cleaner fuels for ships" article (3		
	2016	202	20	IMO	2020		
	2010	MARPOL VI	Med ECA	GHG3	no IMO	MARPOL VI	
Fuel Use	19,160	17,100	17,100	20,100	18,559	18,400	
SOx	681	168	36	680	737	170	
РМ	98	48	37	90	101	50	
NOx	1,330	1,160	1,170	1,270	1,427	1,430	
CO ₂	58,070	51,700	51,880	62,846	57,620	58,290	

Table 12: Comparison o	f current inventory with	า IMO GHG3 and	previous inventories

3.4 Multi-Year Scenarios Fuel Use and Emissions (2020, 2030, 2040, 2050)

3.4.1 Total Fuel Consumption

A key part of our work was to project expected fuel consumption and emissions impacts for the future years 2020, 2030, 2040, and 2050. Table 13, Table 14, and Figure 13 through Figure 15 provide these projections. We estimate fuel consumption to decrease over time due to efficiency (BTU/ton-mile) improvements in the vessel fleet. Along with this fuel reduction will come a concomitant reduction in GHGs and criteria pollutants (Table 14). These shifts will occur under both a MARPOL VI policy regime and a Med ECA policy regime, with the Med ECA also demonstrating significant reductions in SOx and PM compared to MARPPOL VI.

Summary of Mediterranean Fuel Across Scenarios

Figure 13. Multi-year estimates of annual fuel consumption in the Mediterranean Sea Area

	2030		2040		2050	
MT	MARPOL VI	Med ECA	MARPOL VI	Med ECA	MARPOL VI	Med ECA
Total Fuel	15,350,000	15,350,000	13,810,000	13,810,000	12,450,000	12,450,000
MGO	480,000	15,000,000	436,000	13,490,000	400,000	12,160,000
MDO	14,680,000	148,000	13,200,000	133,000	11,910,000	120,000
HFO	86,300	85,000	67,900	76,500	63,200	68,900
LNG	107,000	124,000	103,000	112,000	72,500	101,000

Table 13. Summary of future year estimated fuel consumption in the Mediterranean Sea Area, by scenario and fuel type

3.4.2 Criteria and GHG Pollution Emissions

Table 14. Summary of future year estimated fuel use and pollutant emissions in the Mediterranean Sea Area, by scenario

	2030		2040		2050	
MT	MARPOL VI	Med ECA	MARPOL VI	Med ECA	MARPOL VI	Med ECA
Total Fuel	15,350,000	15,350,000	13,810,000	13,810,000	12,450,000	12,450,000
Total SOx	151,000	33,600	136,000	30,100	122,000	25,900
Total PM2.5	43,400	34,500	39,100	30,900	35,200	26,800
Total NOx	986,000	1,030,000	875,000	908,000	785,000	785,000
Total CO2	46,600,000	48,520,000	41,910,000	43,530,000	37,790,000	37,650,000

Figure 14. Multi-year estimates of SOx emissions under future compliance scenarios for the Mediterranean Sea Area

Figure 15. Multi-year estimates for PM2.5, NOx, and CO2 from shipping in Mediterranean Sea Area
3.5 Fate and Transport for 2020 Regulatory Scenarios

3.5.1 Change in Particulate Matter (PM_{2.5}) Concentration

Figure 16 shows the geospatially-modeled annual average difference in PM_{2.5} concentration due to implementation of the Med ECA compared to the MARPOL VI 2020 baseline. Areas in blue show places where PM_{2.5} under MARPOL VI is greater than for the Med ECA scenario, i.e. where the Med ECA leads to a reduction in PM_{2.5}. As shown, all water areas of the Mediterranean Sea experience reductions in PM_{2.5} concentration, with coastal land benefits being realized primarily along the north African coastline, Spain, France, Italy, Malta, and Greece. Areas with the greatest expected reductions in PM_{2.5} concentrations attributable to ships are at the western Mediterranean Sea, along the coastlines of Spain and Morocco, in the central Mediterranean Sea to the south of Sicily and over Malta, to the south and east of Greece, and along the north coast of Egypt approaching the entrance to the Suez Canal.

Figure 16: Difference in PM_{2.5} concentration between MARPOL VI and Med ECA scenarios

3.5.2 Change in Wet and Dry Deposition

3.5.2.1 Sulphate deposition (SO₄)

Decreases in wet (Figure 17) and dry (Figure 19) sulphate (SO₄) deposition associated with the Med ECA show similar orders of magnitude, but follow different patterns. Decreases in wet sulphate deposition are largest in the western and northern Mediterranean, and show reductions in SO₄ deposition occurring far inland. Reductions in dry sulphate deposition are more closely correlated to the high traffic shipping lanes. Taking the study area as a whole, the average reduction in wet sulphate deposition is 43.3 g.ha⁻¹.yr⁻¹, and the maximum observed reduction is 3,127.8 g.ha⁻¹.yr⁻¹. The maximum percent decrease in wet sulphate deposition observed is 14.23% (Figure 18), which occurred over the Straits of Gibraltar. The average percent decrease in wet sulphate deposition estimated for the whole study area is 1.16%.

The maximum percent decrease in dry sulphate deposition observed is 48.13% (Figure 20), which occurred over the Straits of Gibraltar and extending eastwards towards Algiers. The average percent decrease in dry sulphate deposition estimated for the whole study area is 1.95%.

Figure 17: Decrease in annual wet sulphate deposition between MARPOL VI and Med ECA

Figure 19: Decrease in annual dry sulphate deposition between MARPOL VI and Med ECA

Figure 20: Percent decrease in annual dry sulphate deposition between MARPOL VI and Med ECA

3.5.2.2 PM_{Total} Deposition

Changes in wet (Figure 21) PM_{Total} deposition associated with the Med ECA are two orders of magnitude greater than decreases in dry deposition, and follow different geographic distributions. Decreases in wet PM_{Total} deposition are largest in the western and northern Mediterranean, and show reductions in PM_{Total} deposition far inland. Reductions in dry PM_{Total} deposition (Figure 23) are more geographically limited to western Spain, northern Algeria, the Alps, and isolated areas in Greece, and dry PM_{Total} deposition actually increases over water along the main shipping lane through the Straits of Gibraltar, past Malta and over towards the Suez.

The maximum percent decrease in wet PM_{Total} deposition observed is 4.58% (Figure 22), which occurred over the Straits of Gibraltar. The average percent decrease in wet PM_{Total} deposition estimated for the whole study area is 0.25%.

The maximum percent increase in dry PM_{Total} deposition observed is 8.45% (Figure 23), which occurred over the Straits of Gibraltar and extending eastwards towards Algiers. The average percent change in dry sulphate deposition estimated for the whole study area is 0.66%, indicating that dry PM_{Total} deposition increases overall when going from MARPOL VI to Med ECA, but shows significant geographic variation.

Figure 21: Decrease in annual wet PM_{Total} deposition between MARPOL VI and Med ECA

Figure 22: Percent decrease in annual wet PM_{Total} deposition between MARPOL VI and Med ECA

Figure 23: Change in annual dry PM_{Total} deposition between MARPOL VI and Med ECA

Figure 24: Percent change in annual dry PM_{Total} deposition between MARPOL VI and Med ECA

3.5.3 Change in Aerosol Optical Depth

The estimated percent increase in PM aerosol optical depth is shown in Figure 25. Increases in aerosol optical depth are associated with reduced haze and increased visibility. This figure shows a widespread increase in aerosol optical depth over water areas of the Mediterranean Sea, and extending far inland over North Africa. That greatest increases in PM aerosol optical depth occur over the Straits of Gibraltar and northern Morocco and Algeria, and along the main shipping lane connecting the Straits of Gibraltar, Malta, and towards the Suez.

Figure 25: Percent Change in aerosol optical depth (PM species) between MARPOL VI and Med ECA

4 Assessment of Health and Environmental Mitigation Benefits

4.1 Health Benefits Assessment for 2020 Scenarios

We estimate the expected avoided lung cancer and cardiovascular disease mortality, and childhood asthma morbidity, associated with a SECA in the Mediterranean using our state-of-the-art health model, recently published in *Nature Communications (3)*, and referenced in MEPC 70/INF.34. Our model produces high resolution (10km x 10km) mortality and morbidity estimates, corresponding to the resolution of underlying concentration grids provided by SILAM. Our high-resolution modeling approach reduces under and over estimation of mortality and morbidity inherent with coarser (50km x 50km) models of emissions and population. Our model outputs include high resolution gridded estimates of mortality and morbidity, and country-specific burdens of disease for the countries shown in Figure 8. We use country-specific population growth estimates, disease incidence rates, and age structures, and global gridded population and socioeconomic data from the Socioeconomic Data and Applications Center (SEDAC).³

4.1.1 Avoided Cardiovascular and Lung Cancer Mortality

Health outcomes are improved in all coastal areas of all countries bordering the Mediterranean Sea. Figure 26 shows the combined avoided lung cancer and cardiovascular mortality associated with implementing the Mediterranean ECA. In many cases, health outcomes are improved hundreds of miles inland. Modeling results show a reduction in cardiovascular disease mortality of ~970 deaths/year and a reduction in lung cancer mortality of ~150 deaths/year. Due to the interaction between air quality improvements, population centers, and country-specific incidence rates, we see hotspots where avoided mortality from reduced ship emissions is greater. Clusters of these hotspots can be seen in north Africa as well as areas of the Eastern Mediterranean. Detailed country-specific results of improved cardiovascular and lung cancer disease outcomes are discussed in Section 4.1.2.

Mediterranean Sea SOx ECA Technical and Feasibility Study

³ http://sedac.ciesin.columbia.edu

4.1.2 Childhood Asthma Morbidity

Childhood asthma health outcomes are improved in all countries bordering the Mediterranean Sea. Figure 27 shows the avoided childhood asthma morbidity associated with implementing the Mediterranean ECA. Avoided morbidity in this case refers to the number of children experiencing one or more ship-pollution induced asthma events each year. In many instances, improved health outcomes are observed hundreds of miles inland, and in many Mediterranean countries experience the benefits of the Mediterranean ECA over the entirety of their land area. Modeling results show a reduction in childhood asthma morbidity of ~2,300 children experiencing one or more ship-pollution induced asthma events per year. As for morbidity, we see improved health outcomes across large areas of the Mediterranean countries, with a hotspots of avoided asthma morbidity seen in north Africa and the eastern Mediterranean. Country-specific results are discussed in Section 4.1.2.

Figure 27: Avoided childhood asthma morbidity with Med ECA

4.1.1 Summary of Evaluated Health Benefits

The health effects estimated in this study are shown in Table 15, along with 95% confidence intervals.

Scenario Results (Linear C-R Model)	Reduced Mortality (annual premature adult deaths)		Avoided Childhood Asthma (annual avoided incidents)	
	Reduced Mortality		Reduced	Asthma Morbidity
Health benefit of Med ECA	CV Mortality	969		
	Avoided	(CI 95% 551; 1412)		
	LC Mortality	149	Avoided	2314
	Avoided	(CI 95% 32; 270)	Asthma	(CI 95% 1211; 3406)
	Combined Avoided	1,118	Astinita	
	Mortality	(CI 95% 583; 1682)		

 Table 15. Summary of health benefits evaluated for the Med ECA (model year 2020)

4.1.2 Country-Specific Estimates of Health Benefits

We also estimated mortality and morbidity impacts of a Med ECA by REMPEC nation. These results, along with their 95% confidence intervals, are shown in Table 16.

REMPEC Results by Nation	Reduced Mortality (Cl 95% Low; High)		Avoid (ded Childhood Asthma Cl 95% Low; High)
Albania	19	(Cl 95% 10; 28)	6	(CI 95% 3; 9)
Algeria	162	(CI 95% 90; 240)	338	(CI 95% 177; 497)
Bosnia and Herzegovina	8	(Cl 95% 4; 12)	6	(CI 95% 3; 9)
Croatia	7	(Cl 95% 4; 11)	4	(CI 95% 2; 6)
Cyprus	2	(Cl 95% 1; 4)	4	(CI 95% 2; 6)
Egypt	32	(CI 95% 17; 46)	34	(Cl 95% 18; 50)
France	17	(CI 95% 7; 27)	61	(CI 95% 32; 90)
Greece	62	(CI 95% 30; 96)	76	(CI 95% 40; 112)
Israel	1	(Cl 95% 0; 2)	7	(Cl 95% 4; 10)
Italy	82	(CI 95% 40; 126)	143	(CI 95% 75; 210)
Lebanon	17	(CI 95% 9; 26)	35	(CI 95% 18; 52)
Libya	39	(CI 95% 22; 58)	76	(CI 95% 40; 112)
Malta	4	(Cl 95% 2; 5)	7	(Cl 95% 4; 10)
Monaco*	0	(Cl 95% 0; 0)	0	(Cl 95% 0; 0)
Montenegro	3	(Cl 95% 2; 6)	3	(CI 95% 2; 5)
Morocco	114	(CI 95% 63; 169)	350	(CI 95% 183; 516)
Slovenia	2	(Cl 95% 1; 3)	3	(CI 95% 1; 4)
Spain	43	(CI 95% 20; 67)	118	(CI 95% 62; 173)
Syria	48	(CI 95% 26; 70)	71	(CI 95% 37; 105)
Tunisia	70	(CI 95% 38; 104)	107	(CI 95% 56; 158)
Turkey	386	(CI 95% 197; 582)	865	(CI 95% 452; 1272)

Table 16. Regional allocation of estimates for health benefits

* Monaco shows zero health benefits due to the sampling resolution of our model exceeding the geographic area of Monaco.

4.2 Other Benefits Associated with a Mediterranean ECA

Environmental benefits associated with a Med ECA besides mortality and morbidity include reduced acidification impacts on aquatic systems and reduced aerosol related haze. Although this report focuses primarily on the human health impacts of a Med ECA, the acidification and aerosol effects are important as well. Proxy indicators for these are presented in Section 3.5 and summarized in Table 17.

Sulphate deposition reductions are a proxy indicator for potential change in pH acidification to aquatic and terrestrial ecosystems. PM_{Total} deposition reductions are a proxy indicator for potential change in other particle and nutrient effects. Aerosol optical depth is a proxy for increased suspended particles affecting regional haze and visibility impairment.

We also note that while this analysis focuses on benefits to Mediterranean Sea countries, human health and environmental benefits may extend to nations outside the domain of this study.

Table 17. Summary of proxies for other benefits associated with Med ECA

Environmental Benefit Proxy	Relative Range of Change (%)	Areas of greater benefit shown:
Wet sulphate	1-15 % reduction	Figure 18: Percent decrease in annual wet sulphate
deposition		deposition between MARPOL VI and Med ECA
Dry sulphate	1-50 % reduction	Figure 20: Percent decrease in annual dry sulphate
deposition		deposition between MARPOL VI and Med ECAFigure 20
wet PM _{Total}	0.5 to 5 % reduction	Figure 22: Percent decrease in annual wet PM _{Total}
deposition		deposition between MARPOL VI and Med ECA
Dry PM _{Total}	0* to 10% reduction	Figure 24: Percent change in annual dry PM _{Total}
deposition		deposition between MARPOL VI and Med ECA
Aerosol optical	1% to 6% reduction	Figure 25: Percent Change in aerosol optical depth (PM
depth (PM-related)		species) between MARPOL VI and Med ECA

* Dry PM_{Total} deposition indicated some regions with small increases in deposition, due to non-linear PM formation responses with the reduction of sulphates, consistent with findings reported in science literature.

5 Economic and Technical Feasibility Assessment

5.1 Estimated Compliance Costs for 2020 Mediterranean Policy Scenarios

This study estimated compliance costs for the Med ECA policy scenario using best available data along with conservative assumptions regarding fuel prices and scrubber costs, as described in later sections. The results of our cost analysis is shown in Table 18, which demonstrates that a movement to a Med ECA using fuel switching would add \$1.766 billion/year in 2020 (\$2016) compared to simply meeting the MARPOL standard. Using scrubbers would add \$1.157 billion/year. These values are highly depending on the assumed price differential between HFO, MDO, and MGO. Price differentials are described in section 7.4.1. Figure 28 shows the sensitivity of the cost impacts given a fixed MDO and MGO price, and a change in HFO (x-axis). As HFO price increases (i.e., as the difference between HFO price and MDO/MGO price decreases), the cost of compliance with MARPOL increases, and therefore the incremental cost of compliance with a Med ECA decreases. These graphs demonstrate to decision makers the importance of fuel costs in determining overall compliance costs.

\$ Billion/y Policy Scenario	Total Cost	Compliance Cost
No Action	\$9.884	N/A
MARPOL VI (0.5% S)	\$13.849	\$3.965
Med ECA (0.1% S)	\$15.614	\$1.766
Med ECA (with scrubbers)	\$15.005	\$1.157

Table 18. Estimated costs under different Mediterranean regulatory and compliance scenarios

Note: these results are based on the fuel prices described in Section 7.4.1

Figure 28. Summary graphs of ECA cost sensitivity to fuel price for non-ECA (higher-sulphur) fuels, and scrubber adoption: (a) cost difference between switching from MARPOL VI global fuel to Med ECA fuel; and (b) additional cost to comply with Med ECA including potential economically feasible adoption of scrubber technology.

5.2 Exhaust Gas Cleaning Adoption Analysis

Scrubbers represent one possible compliance option for a Med ECA. Following the method describe in Section 7.4.2.1, scrubbers Table 21 indicates that about 5,900 vessels, some 18% of the fleet operating in the Mediterranean Sea Area, could adopt scrubbers, under conservative 100-year investment horizon and 15% investment rate. This finding is consistent with some, but not all, estimates reported in industry media or other studies, fundamentally related to investment horizon conditions assumed. Therefore, we performed some sensitivity analyses to further explore economically feasible conditions.

Table 19. Fleet counts considered for exhaust gas cleaning technology.

_	Fleet Count	Percent of Total Fleet
Scrubbers	5,915	18%
No Scrubbers	27,248	82%

Table 20 shows the expected scrubber investment rates over a range of investment horizons. Investment decisions are typically confidential business information, and thus we parameterize the decision over a range of investment lifetimes. We identify 39 vessels currently operating with scrubbers in the Mediterranean Sea Area, and do not expect this number to change under a 1-year investment horizon. If scrubber costs are amortized over 10 years the results show that scrubber installations would increase by a factor of ten, from 39 to 464. Assuming a 15-year investment horizon, the results indicate that 3.7% of the fleet might invest in a scrubber, and save the fleet over \$260 million

	Feasible Scrubber Use, Capital included				
Investment years	Med ECA Compliance Savings (\$Billions)	Number of Scrubbers	Percent of Fleet Using Scrubbers		
None	\$0.61	39 in 2020	0.0%		
1	\$0.00	0	0.0%		
5	\$0.02	53	0.2%		
10	\$0.10	464	1.4%		
11	\$0.13	632	1.9%		
12	\$0.15	767	2.3%		
14	\$0.19	1,010	3.0%		
15	\$0.26	1,226	3.7%		
20	\$0.37	1,888	5.7%		
25	\$0.47	2,702	8.1%		
30	\$0.53	4,155	12.5%		
50	\$0.60	5,726	17.3%		
100	\$0.61	5,915	17.8%		

Table 20. Cost analysis relating scrubber capital costs and investment years to the percent of the fleet using scrubbers.

Table 21 shows that scrubber may be feasible for vessels that spend a greater amount of time inside the Mediterranean Sea Area (and/or other ECA region). Scrubbers require increased capital investment but use lower cost fuels, and economic feasibility increases with more cost-saving operation using lower cost fuels. These results agree with previously published work (4). These results indicate that, under and unlimited (100-year) investment horizon scrubber scenario, 5,900 vessels (~18% of the Mediterranean fleet) might be expected to invest in scrubbers, while a majority of the fleet (82%) may determine that fuel switching remains the least cost option.

	No Scrubber		Scrubber Adoption	
	Average Operating		Average Operating	
Vessel Type	Hours [h] in Med	Ship Count	Hours [h] in Med	Ship Count
Cargo ships	1,356	6,875	5,172	458
Container ships	756	1,146	3,464	915
Cruisers	879	62	4,400	118
Fishing vessels	1,472	1,000	3,683	268
Misc	1,202	6,749	4,148	1,183
Passenger ships	1,513	649	3,457	294
RoPax vessels	2,213	177	6,404	361
Service ships	1,265	652	3,910	207
Tankers	1,049	3,586	5,096	723
Unknown	370	5,875	2,469	1,190
Vehicle carriers	749	477	5,597	198
Grand Total	1,039	27,248	4,027	5,915

5.3 Alternative Fuels

Alternative fuels and advanced power systems may offer economically feasible alternatives for Med ECA compliance, particularly if the net costs of these systems are lower than switching to Med ECA fuel. Of course, additional reasons beyond cost-savings within an ECA may support investment in vessels using advanced fuels, but this study evaluates only decision criteria for advanced power and fuel technologies within the scope of evaluating ECA compliance costs. Moreover, some alternative fuels may present other environmental tradeoffs beyond ECA compliance through very low sulphur content in the fuel, which merit consideration beyond the scope of this report.

A variety of fuels and power configurations could be considered. These include, but are not limited to: a) liquefied natural gas (LNG); b) methanol marine fuels; c) hydrogen fuel; d) hybrid propulsion systems that may include wind-assist, fuel cells, energy storage technologies, etc. Given that LNG is a fuel currently used on a significant number of vessels, and across many vessel types, data are most available to conduct economic feasibility assessment using LNG as an example.

As described in Section 7.4.2.2, we compare increased installation costs with fuel cost savings based on price differential between MGO and LNG. We apply this analysis to older vessel, selected to be at or beyond typical replacement ages in 2020. If a vessel net costs of complying with Med ECA conditions are lower using LNG, the that vessel is considered to be economically feasible. We evaluate the fraction of the fleet that is replaced or replacement eligible based on age in 2020, and we evaluate the fraction of those vessels for which LNG would be economically feasible. Additional methodology description can be found in Section 7.4.2.2.

The approach may be considered to serve as a screening tool for economic feasibility of LNG conversion, which is known through fleet adoption experience to be technically feasible. Further analyses of infrastructure, energy supply, and regional economic conditions would be required for specific fleet operator or port selection of alternative fuels.

The average fuel cost savings for vessels could be greater than 30%, given the higher costs of MGO fuel and lower costs of LNG used in this study. Where the average LNG installation premium is lower than the present value of the potential capital investment window derived from fuel cost savings, this study identifies approximately 3,900 vessels to be feasible candidates for alternative fuels. Some of these vessels included smaller service vessels, fishing vessels, etc.; we recognize that conversion of these locally operating and networked vessel operations may include infrastructure and co-fleet investment decisions not captured here. Therefore, we present in Table 22 presents a summary of larger commercial transport and cruise vessels considered to be feasible for alternative fuel operation under the conditions and assumptions applied in this study. Table 23 presents a summary of overall fleet counts combining all ships. Under our base input conditions, about 11%-12% of the fleet operating in the Mediterranean Sea Area could feasibly consider alternative fuels for cost-saving compliance with a Med ECA.

	Count of	Percent		Average Fuel Cost	Average LNG Installation	Capital Investment
	Feasible	of Vessel	Average	Savings	Premium	Window
Vessel Type	Vessels	Туре	Age	(Percent)	(\$ Million)	(\$ Million)
Cargo ships	890	12%	33	32%	\$1.0	\$2.5
Container ships	130	6%	28	33%	\$4.0	\$11.9
Cruisers	45	25%	37	37%	\$5.5	\$20.0
RoPax vessels	220	41%	35	40%	\$3.9	\$19.0
Tankers	260	6%	30	36%	\$1.3	\$4.1
Vehicle carriers	79	12%	33	39%	\$2.6	\$12.0
Total ¹	1,624	11%				

Table 22. Summary of alternative fuel economic feasibility analysis for major vessel types in the Mediterranean Sea Area

1 Fleet adoption rates shown in this table exclude fishing vessels, passenger ferries, service ships, miscellaneous, and unknown vessel types. Including those types increases adoption to ~12%, but merits further feasibility study beyond the scope of this work.

Table 23. Fleet counts considered for alternative fuel replacement, and the number that could reduce ECA compliance costs.

Feasibility Category	Fleet Count	Percent of Total Fleet
Salvage age (>20 yrs) circa 2020	19,700	59.3%
Alternative Fuel-cost Feasible	3,900	11.8%
Other Criteria Necessary	15,800	47.5%

The economic feasibility of alternative fuels will be sensitive to several inputs, primarily to the fuel-price differential between Med ECA compliant fuel and the alternative fuel (LNG in this analysis). Table 24 illustrates this through sensitivity analysis that exercises the LNG fuel price from no-cost (\$0) through a price equal to Med ECA fuel. As illustrated, fleet adoption rates from nearly 17% to 0% are dependent upon the net savings of installing power systems for and operating alternative fuels. Regional compliance cost savings with a Med ECA through adoption of economically feasible alternative fuels could be in the range of \$1.4 Billion per year.

	LNG-MGO	Med ECA Cost with LNG Alternative	Med ECA Savings with LNG	Fleet Percent
LNG Price ¹	Price ∆	(\$ Billion per year)	(\$ Billion per year)	Adoption ²
\$0	\$858	\$13.4	\$2.2	16.7%
\$50	\$808	\$13.5	\$2.1	16.1%
\$100	\$758	\$13.7	\$2.0	15.5%
\$200	\$658	\$13.9	\$1.7	14.0%
\$300	\$558	\$14.2	\$1.4	12.3%
\$327	\$531	\$14.2	\$1.4	11.8%
\$350	\$508	\$14.3	\$1.3	11.3%
\$400	\$458	\$14.4	\$1.2	10.2%
\$450	\$408	\$14.6	\$1.1	9.2%
\$600	\$258	\$14.9	\$0.7	5.1%
\$700	\$158	\$15.2	\$0.4	2.5%
\$800	\$58	\$15.5	\$0.2	0.2%
\$858	\$0	\$15.6	\$0.0	0.0%

Table 24. Cost analysis relating LNG price and LNG-MGO price differential to the percent of the fleet adopting alternative fuel

1 Shaded row represents results of this analysis using prices described in Section 7.4.1.

2 Fleet adoption percent in this table includes all vessel types; further study may be merited for smaller and nontransport vessel types

5.4 Comparison of Vessel-Specific Costs

The above analysis allows us to estimate costs of compliance for different types of vessels. Table 25 provides results of these costs for MARPOL VI, Med ECA, and a Med ECA with scrubbers. Results show that per vessel costs are largest for the biggest most powerful vessels, which include cruise ships, RoPax vessels, containers, and vehicle carriers. The columns represent total costs under each scenario; annual cost increases would be the difference between column prices, e.g., for Cruisers the difference between Med ECA average cost and MARPOL VI average cost would be about \$550k per year.

Table 25. Summary of average annual compliance cost per vessel by type

				Med ECA +
	Ship	2020 MARPOL VI	Med ECA	Scrubber
Vessel Type	Count	Average Cost	Average Cost	Average Cost
Cargo ships	7,333	\$290,000	\$327,000	\$325,000
Misc	7,932	\$48,400	\$54,000	\$52,200
Passenger ships	943	\$70,600	\$79,300	\$74,100
Tankers	4,309	\$681,000	\$763,000	\$750,000
Unknown	7,065	\$24,500	\$27,400	\$26,300
Service ships	859	\$110,000	\$123,000	\$118,000
Fishing vessels	1,268	\$30,500	\$34,100	\$32,900
Vehicle carriers	675	\$1,550,000	\$1,760,000	\$1,650,000
Cruisers	180	\$3,280,000	\$3,830,000	\$3,540,000
RoPax vessels	538	\$2,920,000	\$3,280,000	\$2,970,000
Container ships	2,061	\$2,340,000	\$2,640,000	\$2,540,000

5.5 Benefit-Cost Analysis

5.5.1 Cost effectiveness analysis

Similar to previous ECA analyses, we have assigned the same cost across each of these dimensions, which over-assigns the cost per unit benefit given that the same cost is achieving all of these benefits. See Methods and Data Section 3.4 for further discussion. Table 26, Figure 29, and Figure 30 summarize our results. For example, a Med ECA without scrubbers is shown to cost about \$1.58M per avoided annual death, if we assign all the costs of a Med ECA to our avoided mortality estimates. This cost comes down to \$1.035M/avoided death under a scrubber scenario.

Table 26. Cost-effectiveness of quantified benefits

Benefit Type	MARPOL VI	Med ECA	Med ECA with Scrubbers
Control Target			
Abated SOx emissions	\$7,730 /MT SOx	\$13,400 /MT SOx	\$8,750 /MT SOx
Abated PM2.5 emissions	\$80,300 /MT PM _{2.5}	\$155,000 /MT PM _{2.5}	\$101,000 /MT PM _{2.5}
Health Outcome			
Avoided mortality	\$0.263 M/∆ Mortality	\$1.580 M/∆ Mortality	\$1.035 M/Δ Mortality
Avoided childhood asthma	\$14 k/∆ Morbidity	\$763 k ∕∆ Morbidity	\$500 k/Δ Morbidity

Marginal Cost per Reduced Tonne SOx (\$/tonne)

Marginal Cost per Reduced Tonne PM_{2.5} (\$/tonne)

Figure 29. Control cost-effectiveness of SOx and PM2.5 reductions based on prices in this study

Figure 30. Cost-effectiveness of health outcomes in terms of avoided premature mortality and avoided childhood asthma

5.5.2 Mortality benefit-cost analysis (Lung Cancer and Cardiovascular causes)

A benefit-cost analysis should compare the net monetized benefits for all mitigation and costs for all compliance actions. No prior proposal to designate an ECA under MARPOL VI have presented analyses that monetize all benefits. Prior proposals to designate regional ECAs under IMO MARPOL Annex VI have generally presented cost-effectiveness justifications for benefits of dominant concern or made reference to a concept termed "critical loads", which generally means the maximum tolerable environmental exposure that a region's ecosystem (in whole or part).

VSL is the monetary value of small changes in mortality risks, scaled up to reflect the value associated with one expected fatality in a large population. This project identified a key resource, published in the peer-reviewed literature in 2017, that performs a state-of-practice analysis of VSL that includes nearly all Mediterranean nations (5).

Figure 31. Comparison of Med ECA cost per avoided mortality and the Mediterranean weighted VSL

EE Ra

6 Comparison with other ECA Assessment and Summary of Other Results

6.1 Comparison with other ECA Assessments

Comparison of these net benefits and net costs with prior ECA proposals for North America and for the Baltic and North Sea and English Channel regions can be qualitatively insightful. However, results reported for the stepwise change from global MARPOL VI fuel-sulphur limits to Med ECA compliance cannot be directly compared with prior ECA designations that quantified technical and economic feasibility from a base case prior to current global limits defined for 2020 in MARPOL VI. In other words the environmental and health benefits associated with a shift to ECA-compliant 0.1% S fuel from global fleet average fuel sulphur of ~2.4% or ~2.7% S should be different (and greater than) the benefits of moving from 0.5% S fuel to ECA-compliant fuel limits. Similarly, the costs to achieve net reductions in one policy action, as was the case for all prior ECA proposals, would be expected to yield a lower cost-effectiveness ratio than the cost-effectiveness calculations for the second of two policy actions (global fuel limits) for the Mediterranean.

The benefits estimated in Section 5.5.1 compare an ECA condition with a condition representing a stepwise improvement. Prior ECA proposals estimated benefits and costs from a condition allowing up to 3.5% S fuel to be used and generally used world fleet average fuel sulphur statistics reported by IMO (*6-8*). Fortunately, the project team for this work can reconstruct a set of quantified benefits and costs that offers direct comparison with prior proposals to designate sulphur-related ECAs.

Analyses on fuel consumption and benefits of MARPOL VI published in the peer-reviewed journal Nature Communications in February 2018 provide much of the analytical detail necessary to construct a net benefit assessment for this study's Mediterranean domain (3). Moreover, the fuel usage data and global MARPOL VI fuel-based compliance conditions set forth in that prior work are consistent with the current study. By applying fuel pricing conditions in this work, a cost to shift in one step from pre-2020 2.4% S fleet-average fuel-sulphur to ECA-compliant 0.1% S fuel can be estimated. This produces the necessary inputs for costs and effectiveness to produce metrics directly comparable with the North American proposal findings for cost-effectiveness.

For clarity, data used for the United States (U.S.) cost-effectiveness estimates in Table 27 and Figure 32 comparisons are from Table 3.2-1, Table 4.2-1 and text in Sections 9.1 and 9.2 of MEPC 59-6-5. Ship emission reductions for SOx and PM_{2.5} associated with North American ECA designation are reported in Table 3.2-1 of MEPC 59-6-5. Avoided mortality and morbidity comparisons use the net differences for estimated PM_{2.5}-related health impacts associated with ships, reported in Table 4.2-1 of MEPC 59-6-5; in order to approximate a direct comparison with this study's childhood asthma estimates, we summed the set of childhood asthma related diseases reported separately for the contiguous 48 U.S. states in MEPC 59-6-5. Total cost of compliance with the North American ECA reported in 2009 was \$3.2 Billion per year (Section 9.1 of MEPC 59-6-5). These values result in the cost-effectiveness metrics reported below in column 2 of Table 27 and represent the lower values for the gray boxes in Figure 32.

The 2009 proposal to designate a North American ECA assumed fuel production cost increases of \$145/MT reported in Section 9.2 of MEPC 59-6-5. This technical and economic feasibility study is based on fuel prices since 2009 and uses higher values; the net price increase from pre-2020 MARPOL VI fuel to ECA compliant fuel is ~434/MT, as computed from Table 30. Therefore, we also compare our results with adjusted North American ECA cost-effectiveness by multiplying by the ratio of these cost differences; this price-match adjustment assumes no change in estimated abated emissions or morbidity

or mortality in the 2009 North American ECA proposal. Column 3 of Table 27 and higher values for the gray boxes in Figure 32 present these comparison values

The last column of Table 27 and the black diamond markers in Figure 32 present Mediterranean specific cost-effectiveness estimates as if the region were to be designated an ECA from a base case of pre-2020 fleet conditions using 2.4% S fuel-sulphur. One insight from this analysis is that the results presented here are very consistent with prior proposals to designate regional ECA protection. The primary insight across all these metrics is that achieving ECA-compliant performance by ships in the Mediterranean is about as cost-effective as other ECA designations, when compared with current (pre-2020 global MARPOL VI) conditions.

Table 27. Cost-effectiveness comparison with North American ECA¹

Benefit Type	US estimates for North American ECA	North American ECA results with adjusted fuel prices ²	Med ECA combining MARPOV VI and ECA results
Control Target			
Abated SOx emissions	\$4,500 /MT SOx	\$14,000 /MT SOx	\$8,900 /MT SOx
Abated PM2.5 emissions	\$43,000 /MT PM _{2.5}	\$128,000 /MT PM _{2.5}	\$94,000 /MT PM _{2.5}
Health Outcome			
Avoided mortality ³	\$0.410 M/Δ Mortality	\$1.229 M/Δ Mortality	\$0.353 M/Δ Mortality
Avoided asthma illnesses ⁴	\$16 k/∆ Morbidity	\$49 k /Δ Morbidity	\$21 k/∆ Morbidity

1 Combined MARPOL VI and Med ECA costs for this study compared with U.S. NOx and PM data to reduce ship fuel from pre-MARPOL VI conditions to 0.1% S ECA conditions.

2 Given that the 2009 North American proposal to designate and ECA used a fuel price difference of \$145/MT to shift from HFO to ECA compliant fuel, and this study uses a fuel price difference of ~\$434/MT, we multiply US cost-effectiveness estimates (column 2, above) by the ratio of these price differences to match with fuel price changes used for this study.

3 North American mortality methods are similar to those used here, although they may use a health risk equation similar to the log-linear equation discussed and compared in Sofiev et al, Nature Communications 2018 (3).

4 For comparison purposes with this study's childhood asthma illness results, the set of childhood asthma related diseases reported separately by the United States was summed.

Figure 32. Summary Comparison of cost-effectiveness metrics for this study (combining MARPO VI and Med ECA measures) with U.S. SOx and PM data from the Proposal to Designate an Emission Control Area for North America.

Mediterranean Sea SOx ECA Technical and Feasibility Study

6.2 Survey results on national perspective and preferences

Place holder for material to be provided by REMPEC, and briefly summarized per contract.

7 Methods and Data

Section 3.1 provides detail on methodologies and data used to assess shipping activity and to estimate shipping emissions and fuel consumption for base year 2016 and future year scenarios with and without ECA compliance performance. Section 3.2 summarizes the employment of FMI's *System for Integrated modeLing of Atmospheric composition (SILAM) model* to evaluate fate and transport of ship emissions needed to estimate geospatially the increased concentrations of air pollution exposure, change in wet and dry deposition of harmful combustion exhaust particles, and change in suspended aerosols that may contribute to regional haze. Section 3.3 summarizes health risk modeling that is applied to updated nation-specific health incident data to estimate premature mortality and asthma impacts that may be avoided if the fleet of ships operating in the Mediterranean were to comply with Med ECA fuel-sulphur conditions. Section 3.4 presents the fuel prices used to estimate increased costs from adopting Med ECA compliant fuels, and the potential for alternate technical measures (aftertreatment and advanced fuels) to achieve Med ECA compliance at lower cost. Section 3.5 discusses key sources of methodological or data uncertainty, and sensitivity to key model input choices.

7.1 Emissions Modeling

We estimate Mediterranean ship emissions and fuel usage using the Ship Traffic Emission Assessment Model (STEAM). The Finnish Meteorological Institute's STEAM model combines vessel activity from Automatic Identification System (AIS) and technical description of the global fleet from IHS Fairplay. The STEAM model involves water resistance calculations based on the speeds indicated by the AIS data and it uses engine load dependent functions to describe specific emissions and energy usage of each individual ship. The STEAM model has undergone extensive peer-review and has formed the basis for multiple HELCOM and IMO submittals.⁴ Used in the Third IMO GHG Study (*9*), and recently used to evaluate the impacts of the 2020 MARPOL VI 0.5% global sulphur cap, we consider STEAM to be the premier model for emissions modeling work.

We incorporate tonnage, power, and vessel count growth rates shown in Table 28 to estimate future scenarios. Our experience preparing forecasts for shipping is extensive. In 2007, EERA developed emissions forecast techniques that recognized the roles of trade activity, energy demand, and technology in estimating future emissions (*10*). STEAM model integrates capacity for vessel-type-specific fleet renewal rate, trade traffic growth rates, fuel-type choices, and technology adoption (*11*).

7.1.1 Fuel Usage

The STEAM model estimates fuel consumption based on observed vessel AIS operating profiles. Fuel usage estimates form the basis for estimating economic costs due to changes in fuel usage and price. Fuel usage is estimated based on the vessel operating mode, speed, installed power, and environmental conditions, such as wave and ocean currents, which affect fuel use. Section 7.5.4 describes fuel prices.

⁴ MEPC70/INF.34, MEPC70/5/1, MEPC57/INF.14; Background reports for the North Sea NECA, MEPC70/5/Rev.1: Assessment of the environmental impacts and health benefits of a nitrogen emission control area in the North Sea" (PBL, 2012). Economic Impact Assessment (Danish Ministry of the Environment, 2012) Annual HELCOM ship emission reporting for the Baltic Sea countries, see: MARITIME17/4-3/INF, MARITIME16/4-2/INF, MARITIME15/4-4/INF, MARITIME14/4-8/INF, MARITIME13/4-5/INF, MARITIME11/7-3/INF, MARITIME10/5-1/INF, MARITIME9/Agenda Item 9, MARITIME9/6-2/INF, MARITIME8/6-2/INF, MARITIME8/6-3/INF, MARITIME7/7-1/INF Contribution to the work of AIS expert working group:, AIS EWG/15/7-2, AIS EWG/16/5-2, AIS EWG/17/9, AIS EWG/18/6-1

7.1.2 Future Scenarios

STEAM inputs use 2016 high spatiotemporal resolution Automatic Identification System (AIS) data, coupled with fleet growth rates similar to reported in Table 28 2018 IMO Fuel Availability, to estimate air emissions from ships for 2020, 2030, and 2050 (*12, 13*). We present two tabular inventories, allowing for comparison between inventories based on 0.5% sulphur fuels, and with 0.1% sulphur ECA-compliant fuels. We also produced emission inventories for sulphur oxides (SOx), nitrogen oxides (NOx), particulate matter (PM_{2.5}), carbon dioxide (CO₂), and fuel usage.

STEAM model includes vessel-specific and dynamic step changes on an annual basis, assigned stochastically. This differs from the vessel-type category growth rates used in other work, and provides greater detail than some other vessel-specific models we have seen, including the IMO Fuel Availability Study and Sofiev et al. (2018), which used simple categorical growth rates (*3, 12, 13*).

MAIN CATEGORY	ANNUAL DWT CHANGE [%]	ANNUAL POWER CHANGE [%]	ANNUAL COUNT CHANGE [%]
RoPax vessels	1.25	-2.25	1.1
Vehicle carriers	1.25	-2.25	1.1
Cargo ships	0.4	-1.7	0.2
Container ships	1.2	-2.25	1
Tankers	2	-1.9	1.2
Passenger ships	0.3	-1.3	1
Cruisers	0.3	-1.3	1
Fishing vessels	0.3	-1.3	1
Service ships	0	-1.3	0.5
Unknown	0	-1.3	1
Misc	0	-1.3	0.5

Table 28: STEAM Model vessel power, tonnage, and count growth estimates used for future scenarios

7.2 Emissions Fate and Transport and Exposure Modeling

FMI's System for Integrated modeLing of Atmospheric composition (SILAM) model was used to estimate changes in atmospheric PM_{2.5} concentrations, as well as wet and dry deposition of PM_{total} and SO₄. SILAM is a global-to-mesoscale dispersion model developed for atmospheric composition and air quality modeling. The SILAM Model has been peer-reviewed and applied to a range of air quality studies from global (*3*), to regional ((*14*) and local (*15*). The technical description of the SILAM model is available from FMI⁵.

The SILAM model is capable of generating high resolution estimates of air quality based on inputs from the STEAM model (Figure 33), and land-based inventories also used by FMI. Recently, we used SILAM in our assessment of the global health benefits of implementing the 0.5% sulphur rule.

The modeling domain for this project is shown in Figure 8, however, due to the transboundary nature of air pollution, we also developed a lower-resolution (0.5×0.5 degree) global-scale emissions inventory for marine and land-based sources to model the boundary conditions around our modeling domain, within which we developed high-resolution (0.1×0.1 degree) marine and land-based emission profiles.

⁵ http://silam.fmi.fi

Figure 33: Schematic representation of the STEAM/SILAM system for air quality research problems.

7.3 Health Related Impacts Modeling

The methodology for modeling health impacts follows the approach discussed in previous work (*16, 17*). Earlier work applied mortality risk functions identified in Ostro (2004) (*18*), which in turn builds on work developed out of the United States Harvard Six Cities study conducted earlier by Pope, et al. (*19-21*).

PM_{2.5} exposure concentrations in our study area study area are similar to those in the Harvard Six Cities study, indicating that premature mortality risk functions derived from the Harvard Six Cities study can be applied to our study area.

This health impacts assessment follows work published in *Nature Communications* in 2018 that employs a concentration-response (C-R) function from Lepeule, et al. (2012), which updates epidemiology from the Harvard Six Cities study (*22*). Health outcomes are estimated using a linear C-R function, which reflects updated understanding of the relationship between health and exposure to air pollution and provides improved estimates of health outcomes where ambient concentrations of PM_{2.5} exceed WHO guidelines (>20µg m⁻³). Health outcome estimates focus on cardiovascular and lung cancer mortality responses, aligned with Lepeule, et al. (2012). As in earlier work (Sofiev et al., 2018), we include an assessment of childhood (<14 years) asthma morbidity, which uses similar concentration-response equations based on reported asthma incident rates by nation (*23*).

Gridded population data for 2020 are from NASA's Socioeconomic Data and Applications Center (SEDAC) Population of the World⁶, Version 4.10 (*24*). We apply age cohort fractions directly to the population counts for each nation from the United Nations to determine the age cohort populations by country

⁶ Available at: <u>http://sedac.ciesin.columbia.edu/data/collection/gpw-v4</u>. Note that the gridded population data had to be converted to a grid resolution consistent with the concentration data.

(25).⁷ We assume a uniform populations age structure across each country, multiplying the population grid by the country-specific fraction of population under the age of 14 and between the ages of 30 and 99. This approach likely does not account for regional differences in age cohorts, but represents the best available practice given the paucity of country-specific age-cohort data.

Country-specific incidence rates for cardiovascular disease and lung cancer are derived from data from the World Health Organization's Global Health Observatory (GHO) (Table 29) (*26, 27*). To determine overall health outcomes associated with ship emissions and the Med ECA, we calculate avoided mortality based on the change in $PM_{2.5}$ concentration between the 2020 MARPOL VI (0.5% S) scenario and the Med ECA (0.1% S) scenario.

	Cardiovascular	Lung Cancer	Asthma
Country	(Disease Per 100,000)	(Disease Per 100,000)	(Disease Percent, Age <14)
Albania	330.0	26.0	3.6
Algeria	220.3	8.7	7.1
Bosnia And Herzegovina	277.8	29.1	9.9
Croatia	208.0	22.9	5.2
Cyprus	142.3	20.7	9.9
Egypt	412.3	7.6	5.2
France	70.6	27.8	12.6
Greece	135.1	31.8	9.8
Israel	77.1	20.3	10.3
Italy	103.2	22.9	11.4
Lebanon	295.0	17.0	11.6
Libya	324.0	19.0	9.9
Malta	138.5	20.9	14.1
Monaco	70.6	27.8	9.9
Montenegro	329.2	36.6	9.9
Morocco	260.3	12.8	13.3
Slovenia	138.5	28.7	9.9
Spain	82.1	23.8	13.9
Syria	377.5	17.0	5.1
Tunisia	278.5	15.7	9.3
Turkey	202.6	29.8	9.9

Table 29: Cardiovascular and lung cancer disease mortality, and childhood asthma morbidity rates

Country-specific incidence rates for childhood asthma are provided in the 2014 Global Asthma Report (28). For Asthma disease, we use the "Asthma Ever" data in the 13-14 year old age group reported in the 2014 Global Asthma Report (Table 29), and apply this percentage to the population fraction under the age of 14. Zheng et al (23) provide relative risk (RR) factors for childhood asthma from exposure to $PM_{2.5}$ pollution (Table 2 of Zheng), which we convert to β coefficients.

⁷ We use the Population by Age Group dataset, which can be downloaded at

<u>https://esa.un.org/unpd/wpp/Download/Standard/Population/</u>. We use the Median Variant values for the year 2020 to calculate the 30-99 fraction, based on summing population across all age cohorts at 30 years or older and dividing by the total population. These fractions by country were then converted to gridded format using GIS software to be consistent with concentration data resolution.

We calculated avoided mortality and morbidity due to changes in total particulate matter concentrations using approaches mentioned above, consistent with other recent work in this area (*17, 29*). The total effect (E) of changes for each grid cell is given as:

$$E = AF \cdot B \cdot P$$

where *B* represents the incidence rate of the given health effect (Table 29); *P* is the relevant population, weighted by the age cohort; and *AF* is the attributable fraction of disease due to the shipping-related PM pollution, and is given by:

$$AF = \frac{RR - 1}{RR}$$

For a "linear" C-R model, the response RR is given by the function (30):

$$RR = e^{\beta \cdot (C_1 - C_0)}$$

And therefore,

$$AF = 1 - e^{\beta \cdot (C_0 - C_1)}$$

which leads to

$$E = \left[1 - e^{\beta \cdot (C_0 - C_1)}\right] \cdot B \cdot P$$

where β = 0.023111 (95% CI = 0.013103, 0.033647) for cardiovascular mortality; β = 0.031481 (95% CI = 0.006766, 0.055962) for lung cancer related mortality (*20, 22, 31*); and where β = 0.002469 (95% CI = 0.001291, 0.003633) for childhood asthma morbidity (*23*).

7.4 Economic Feasibility Assessment

7.4.1 Fuel Prices

The primary data source for fuel prices over the last decade used in this study is BunkerIndex⁸ coupled with data from the St. Louis Federal Reserve (FRED) on LNG prices⁹. Figure 34 shows the mean weekly fuel prices (\$/MT) for IFO380, IFO180, MDO, MGO, and LNG from 2009 to 2018.

We note two price regimes in the bunker fuels data. 2011-2015 represents a higher price regime, postrecession, while 2015-2018 shows a lower price regime (along with pre-2011). We adopt the most recent price regime for this work, as it includes the global price effects of ECA fuels, which went into effect post-2015. All prices are adjusted to 2015 constant \$USD using the CPI index for fuels and fuel oil¹⁰ to allow for better comparison between time series prices.

⁸ http://www.bunkerindex.com/prices/index.php

⁹ https://fred.stlouisfed.org/series/PNGASJPUSDM

¹⁰ https://fred.stlouisfed.org/series/CUUR0000SEHE

Figure 34: Bunker prices for marine bunker fuels from 2009 to 2018, resampled to mean weekly prices, in 2015 USD/MT.

We assume that MDO is compliant with global MARPOL VI standards (0.5% S), and thus use the MDO price to define the fuel price under the MARPOL VI scenario. We note that this price includes fuels that may not fall within compliance of global MARPOL VI. In all weeks observed from 2009 to 2018, MDO prices are lower than ECA-compliant MGO prices.

As shown in both Figure 34 there are periods of volatility in the absolute fuel price time series data, as well as in the ratio of the prices compared to MGO (Figure 35). The primary period of volatility in fuel prices was between September 2014 and July 2016. Prices, and their ratios, are similar before and after this time period. In the period after July 2016, IFO380 prices are 58.5% of MGO prices, and MDO prices are 87.0% of MGO prices. As of August 2018, LSFO (0.5% S compliant) prices at Rotterdam (\$635.00/tonne) were priced at 96.2% of MGO prices (\$656.50/tonne). Given observed fuel price differentials, our selection of MDO price represents a conservative choice for estimating an upper bound in the fuel price differentials.

Additionally, we recognize that definitions of MGO and MDO fuels vary regionally, and do not always directly map to MARPOL VI and ECA compliant fuels, respectively. We address this issue by selecting the maximum observed spread between HFO, MDO, and MGO in our time series data, in order to reflect the maximum observed price differential, and account for inconsistencies in fuel definitions, while overall providing a robust accounting of fuel prices.

As noted, LNG price data are provided by FRED and do not directly reflect delivered ship bunker prices, but rather global LNG fuel prices. In addition, we convert LNG prices to prices per MT of oil equivalent, but this calculation doesn't account for the fuel consumption penalty associated with using LNG in marine engines, e.g., changes in thermal efficiency and/or energy density, which entail converting LNG prices per volume or mass to prices per kWh.

Figure 35: Price ratio of MGO to IFO380, IFO180, and MDO

7.4.1 Cost Methodology for MARPOL VI and Med ECA Scenarios

Table 30 shows the fuel prices used in this analysis. This study chooses a high ECA-complaint fuel prices and adopts a wide price differential in the available time series data in order to provide a conservatively high estimate of the costs of fuel switching. Specifically the 10-year high MGO price represents this study's ECA-compliant fuel price, an MDO price between the 10-year high and 75th percentile prices is selected to represent MARPOL VI global-complaint fuel price, and the 10-year mean IFO 380 price represents the price of potential use of HFO residual marine fuels (e.g., with scrubbers in Section 7.4.2). An LNG price approximately equal to the 70th percentile of historic LNG price data is applied to LNG consumption (for currently identified LNG vessels, and for advanced fuel consideration in Section 7.4.2).

Table 30: Fuel prices used in this analysis

	LNG Price	MGO Price	MDO Price	HFO Price
Study fuel prices	\$327	\$858	\$760	\$424

The change in fuel costs under the MARPOL VI scenario adjusts STEAM estimates of HFO fuel usage in the base 2016 analysis by the HFO-MDO price difference. Given the 2020 MARPOL VI fuel consumption detail from the STEAM model, the cost of compliance with MARPOL VI global 0.5% sulphur limit is directly estimated by multiplying each marine fuel by the study price shown in Table 30. Similarly, each type of fuel consumption provided for 2020 Med ECA fuel consumption by the STEAM model is multiplied by its characteristic fuel price per Table 30. The increased cost to adopt Med ECA compliant fuel is therefore the difference in price between 2020 Med ECA and 2020 MARPOL VI fuel costs.

7.4.2 Cost methodology for evaluating technology and advanced fuels adoption

7.4.2.1 Exhaust Gas Cleaning (Scrubber) Costs

To estimate scrubber penetration and costs, we took the vessel-specific output from the STEAM model for the 2020 scenarios and identified the installed power on each of the >30,000 vessels and the fuel consumption estimates under the Med ECA scenario condition. The data output from the STEAM model also include annual operating hours in the region.

The economic details for scrubber investment were obtained primarily from a 2018 CARB report (*32*). Scrubber details for capital costs and operating costs are provided in Section 4 (Economics) of that report, and include reference to international work from a 2013 presentation by DNV-GL and an *Exhaust Gas Cleaning Systems Selection Guide* prepared by Glosten Associates for the U.S. DOT Maritime Administration. The CARB tech report acknowledged lower adjusted capital costs per kW installed power for larger vessels. We followed the CARB technical reports alignment for lower capital costs for larger vessels, however we applied the same O-M costs, 4% of capital annually, uniformly across all vessel types

Bounds	DNV-GL	MARAD	This study
Capital Cost		\$/kV	Vh
Lo	\$152	\$147	\$147
Hi	\$216	\$470	\$470
Operating Cost	\$/MWh	Percent of	annual capital costs
Lo	\$0.4	1%	4%
Hi	\$1.0	4%	4%

	Table	31.	Summary	of	cost	elements	used	to	evaluate	scrubber	economic	feasibility
--	-------	-----	---------	----	------	----------	------	----	----------	----------	----------	-------------

Following the general methodology published in (Carr and Corbett, 2015, RATES), we applied the annualized cost of capital, annualized cost of maintenance, and annual cost of operations provided in $\frac{1}{kWh}$. Using the scrubber capital and OM cost inputs, we were able to estimate the annualized additional cost to operate a scrubber. By substituting the lower price for HFO fuels, we were able to estimate the annual savings in fuel costs if a vessel with a scrubber cost, and the net savings of scrubber operations using a less costly fuel was compared with the cost of compliance with Med ECA fuel standards. Our methodology adopts the assumption that a vessel that would install a scrubber would also use the least costly marine fuel, namely HFO. If the cost of operating a scrubber allowed the vessel to comply with ECA conditions at a lower cost than fuel switching, it was identified as an economically feasible investment. Input conditions to which the results were most sensitive included the following

- A. Hours of operating within the ECA domain
- B. The investment horizon (i.e. the years over which the investment cost was amortized), relative to the age of the ship
- C. The interest rate at which the fleet was considering this investment

We observe, as expected, that vessels with higher installed power would realise greater annual fuel savings from operating a scrubber, and scrubber technology cost inputs for larger ships were assigned lower capital costs per installed kW.

7.4.2.2 Alternative Fuel Costs

Technology providers and fleet managers have considered alternative fuel technical feasibility with increased attention over the past couple of decades. This includes both liquid and gaseous fuels, ranging from petroleum derived products to natural gas derived products (e.g., methanol) to gaseous products (e.g., LNG). However, limited demonstration or commercial adoption of alternative fuels means that market prices for alternative fuels and costs to convert or build ships using these fuels are not well established. Most information on pricing comes from industry reports by technology providers presenting analyses that help market the feasibility of these technologies, so may be considered preliminary or prospective a priori of broader market adoption. Moreover, full costs for conversion to alternative fuels depends upon other factors beyond ship costs; infrastructure must be provided for handling, delivery, and bunkering of alternative fuels. Lastly, while the fuel-sulphur content of these fuels may be near zero, fully in compliance with a Med ECA sulphur limit, there are other environmental tradeoffs worth evaluating; a full assessment of alternative fuel feasibility may require consideration of greenhouse gases, engine thermal efficiency and energy density tradeoffs, and life-cycle environmental impacts that consider fuel extraction and processing stages prior operational stages.

This analysis focuses on one alternative fuel in the context of shipboard adoption and use only. LNG is an ECA compliant fuel that is being increasingly employed in the marine transportation sector. We employ a similar methodology to that used for scrubbers to estimate the costs and penetration of LNG in the Mediterranean Sea fleet. Essentially, we use the cost of fuel-based compliance with a Med ECA as the default from which fuel cost savings may be achieved through use of lower cost LNG fuel. Within the bounds of the higher cost of Med ECA fuel and lower cost of using LNG fuel, an investment window for capital conversion to alternative fuels can be identified. In other words, a vessel net cost of complying with Med ECA conditions are lower using LNG, the that alternative fuel conversion for that vessel may be economically feasible. We evaluate the fraction of the fleet that is replacement eligible in 2020, i.e., greater than 20 years since build. We evaluate the fraction of those vessels for which LNG would be economically feasible.

We identify and select a set of candidate replacement vessels [i.e., older vessels nearing typical salvage age for that vessel type] and replacing them with a new LNG powered vessel. We apply a cost premium per installed kW to represent the cost of installation of necessary LNG power systems (*33*). For this study, we expect to apply a price premium of \$450/kW to estimate the additional capital costs associated with containership LNG operation. Obtained from an industry report for LNG costs and benefits in the context of containerships, we apply this per-kW cost factor to all vessels eligible for age-related replacement.

We also apply fuel price premiums from Table 30 to determine the price difference between Med ECA fuel and LNG. Using this estimator of fuel cost savings, we compute the percent change in annual fuel costs. Using a ship financing investment rate of 6% and a financing period of 20 years, we compute the net present value of fuel cost savings. Results are presented in Section 5.3.

7.4.3 Methodology for partial valuation of benefits (avoiding premature death)

This section describes how social benefits such as avoided mortality may be included in a benefit-cost context through rigorous application of economic valuation techniques. This study applies the latest available nation-specific study valuing a statistical reduction in the risk of premature mortality to the health mortality results obtained in Section 4.1.

7.4.3.1 Cost-effectiveness Evaluation

Describe an alternate approach for comparing the costs of achieving benefits when they cannot be fully valued or directly monetized using accepted economic algorithms. These benefits offer substantial value that may require deeper research using social science techniques such as citizen willingness to pay, willingness to accept, risk preference surveys or experiments, etc. One approach that is used in these cases it to evaluate the cost-effectiveness, i.e., the cost to achieve a unit of benefit.

Table 32 identifies those outcomes for which this study may consider cost-effectiveness reporting. Providing a metric of cost-effectiveness routinely offers decision makers a convenient way to consider comparative actions, and represents a commonly used decision support tool. However, applying total costs of compliance to any one of these beneficial outcomes presents conceptual challenges that need to be transparently revealed.

- 1. Within a benefit type, allocating total costs to each metric treats them as independent when in fact they are jointly obtained by the same cost of compliance. Therefore, the cost-effectiveness ratio is overstated; in other words, the costs of achieving the set of outcomes is less than suggested. Conceptually, the cost-effectiveness of control might best be applied to the specific pollutants controlled (SOx), particularly where there are broad benefits (reduced PM exposure, reduced acidification) that would not be associated solely with an alternate pollutant (PM_{2.5}).
- 2. Across benefit types, one cannot combine or cross compare the benefits for two primary reasons. First, some benefit types represent nested components of other benefit types; clearly, reducing emissions contributes to reduced exposure which contributes to reduce health outcomes. Second, the numbers are not directly comparable given orthogonal units in the denominators; achieving least-cost compliance per tonne emissions through emission control may appear more or less "cost-effective" than the cost of reducing the percent of acidifying discharge to the environment.
- 3. Many environmental policy decisions are made using commonly reported cost-effectiveness metrics that are, in fact, proxies for beneficial goals stated in the emission control policy. For example, IMO MARPOL Annex VI "seeks to minimize airborne emissions from ships (SOx, NOx, ODS, VOC shipboard incineration) and their contribution to local and global air pollution and environmental problems." In this regard, the two most common metrics types are (a) control cost-effectiveness metrics, and (b) outcome cost-effectiveness metrics. Control cost-effectiveness is generally the most easily quantified and compared across policy measures. For example, the proposal to designate the North American ECA provided control cost-effectiveness estimates (MEPC 59-6-5, Page 7, Paragraph 14); that proposal does not provide outcome cost-effectiveness estimates, nor benefits monetary valuation. Similarly, the proposal to designate the North Sea SOX ECA sought to "maximise the environmental benefit at least cost" by suggesting a relative cost-effectiveness of controlling ship emissions (MEPC 44-11-4).
- 4. The outcome of greater importance often may be considered the dominant outcome for examining cost-effectiveness. Often policy decisions are taken by considering the total costs assigned solely to a primary benefit, which implies that other benefits of pollution control are un-valued co-benefits. For example the designation of the North Sea SOX ECA in 1999 considered that "ship emissions in the North Sea area contribute significantly to potentially damaging levels of SOx deposition in areas with sensitive ecosystems (MEPC 44-11-4). Technical and feasibility support for designating the North Sea SOX ECA did not include an assessment of air quality benefits for premature mortality from respiratory exposure. Additionally, the designation of the North American ECA included discussion of benefits to "terrestrial and aquatic ecosystems such as visibility, ozone uptake, eutrophication, acidification, loss of forest

biomass, and overall forest health ... [and] ... the reductions in adverse health impacts" (MEPC 59-INF.13).

Table 32. Summary of quantified benefits that may be evaluated using cost-effectiveness

Benefit Type	Denominator input
Control cost-effectiveness	Presented in Section 5.5.1
Abated SOx emissions	Reduction in annual MT SOx
Abated PM2.5 emissions	Reduction in annual MT PM2.5
Exposure cost-effectiveness	Not quantified: intermediate between control and outcome
Reduced PM2.5 exposure	Annual average reduction in PM concentration μg per m ²
Reduced sulphate deposition (wet/dry)	Percent change (annual average over domain)
Reduced PM deposition (wet/dry)	Percent change (annual average over domain)
Health related cost-effectiveness	Presented in Section 5.5.1
Avoided mortality	Avoided annual deaths (lung cancer/cardiovascular)
Avoided childhood asthma	Avoided annual childhood asthma

7.4.3.2 Monetary Value of Reduced Risk of Premature Death from Ship Pollution In general a benefit-cost analysis should compare the net monetized benefits for all mitigation and costs for all compliance actions. This could be considered in the following equation:

Net Benefits \geq Value of avoided impacts – Cost to achieve Med ECA

Where the value of avoided impacts may be consider to include the monetized sum of

Value of avoided impacts

 $= Avoided Mortality ($V_{Mortality}) + Avoided Morbidity ($V_{Illness+Care})$ $+ Avoided Deposition Damages ($V_{Acidification}) + Improved Visibility ($V_{Haze})$ + etc.

No prior proposal to designate an ECA under MARPOL VI, indeed very few policy proposals if any, have presented analyses that fully monetize all benefits. Prior proposals to designate regional ECAs under IMO MARPOL Annex VI have generally presented cost-effectiveness justifications for benefits of dominant concern. The basis for designation the Baltic Sea SECA in the first ratified version of MARPOL Annex VI was based in part on a concept termed "critical loads", which generally means the maximum tolerable environmental exposure that a region's ecosystem (in whole or part).

Moreover, there are a number of ambiguities and assumptions that often need to be documented or researched. However, substantial research has been conducted for decades into valuing changes in the risk of premature death, termed by researched to be the "value of a statistical life" or VSL. Formally, VSL is the monetary value of small changes in mortality risks, scaled up to reflect the value associated with one expected fatality in a large population. This project identified a key resource, published in the peer-reviewed literature in 2017 that performs a state-of-practice analysis of VSL:

"Countries throughout the world use estimates of the value of a statistical life (VSL) to monetize fatality risks in benefit-cost analyses. ... This article proposes ... the best way to calculate a population average VSL ... for all 189 countries for which World Bank income data are available" (5).

Viscusi and Masterman include nearly all Mediterranean nations as listed in Table 33 (5). Given the regionally asymmetric mortality patterns reported in Section 4.1.2, Table 16, we multiply each nation's results for mortality and avoided mortality attributed to ship emissions by that nation's respective VLS estimate, producing a single mortality-weighted VSL for the Mediterranean coastal nations.

Nation	VSL in Million 2015 USD	Nation (continued)	VSL in Million 2015 USD
Albania	0.736	- · · ·	
Algeria	0.838	Libya	N/A
Bosnia and Herzegovina	0.803	Malta	4.117
Croatia	2.185	Monaco	N/A
Cyprus	4.471	Montenegro	1.242
Egypt	0.575	Morocco	0.521
France	6.975	Slovenia	3.818
Greece	3.496	Spain	4.908
Israel	6.154	Syria	N/A
Italy	5.645	Tunisia	0.685
Lebanon	1.326	Turkey	1.712

Table 33. International Income-Adjusted Estimates of the VSL for Mediterranean Sea Area nations

The regionally adjusted VSL is presented in Table 34, and can be applied as a sort of benefit-cost threshold. Estimated compliance costs per avoided mortality that are less than a mortality VSL for the region may be interpreted to provide net benefits with regard to health outcomes involving lung cancer or cardiovascular mortality risks. Such a result would imply that additional benefits to morbidity and environmental damage would strengthen the evidence for positive net benefits. Given the other benefits of lower-sulphur ship fuel on morbidity and environmental damages, a case where compliance costs were to exceed this VSL threshold could not independently be used to declare that compliance costs exceeded the sum of total benefits.

Table 34. Mortality-weighted VSL for Mediterranean coastal nations

	Mortality-weighted VSL	
	for Mediterranean coastal nations	
Policy Regime	(\$ Millions)	
No Action	2.157	
MARPOL VI	1.094	
Med ECA	1.818	

Section 5.5.2 applies this VSL methodological approach to evaluate estimated net benefits from reducing premature mortality risk.

7.5 Uncertainty and Limitations

7.5.1 Emissions Modeling

The STEAM model includes dynamic growth and rates of change in fleets. Growth estimates reflect observed changes in the Mediterranean Fleet, and projections assume similar fleet composition and

update conditions to those that were observed in the past. The STEAM model also assumes "optimistic" improvements in energy efficiency for new ships. These energy efficiency improvements are governed by projected adoption of EEDI measures in new builds, and continuing behavioral adaptations, such as slow steaming. The emissions estimates also assume no changes in demand for maritime transport of goods. Publications employing the STEAM model have undergone extensive peer review, and the STEAM model represents one of the premier ship emissions models, having been widely applied to international shipping studies.

7.5.2 Air quality modeling

The uncertainty of SILAM model outputs has been evaluated in several studies. These include the comparison over marine areas stressing the performance of the sea salt controlling mechanisms (34-36), analysis of European data (37), publications of Air Quality Model Intercomparison Initiative (38, 39), automatic daily evaluation for Europe (http://www.regional.atmosphere.copernicus.eu/), China (http://www.marcopolo-panda.eu/forecast), and Northern Africa and Southern Europe (https://sds-was.aemet.es). SILAM estimated mean SO₂ concentrations in regions with substantial sulphur emissions are well calibrated to the environment, e.g. in China the bias of SO₂ is -3.3 µg S m⁻³, in Europe, the SO₂ bias is +0.3 µg m⁻³ while for sulphate it is -0.03 µg S m⁻³.

Overall, evaluation of the SILAM model performed in several international studies did not show any major deficiencies of the model.

7.5.3 Exposure and Health

We employ mortality and morbidity incidence rates reflecting the best available data from the WHO and Global Asthma Network. However, we note that the nation-to-nation comparisons indicate some potential discontinuity in underlying incident rates among communities that may be near each other but in adjacent nations. Given the similarity/dissimilarity among adjacent nation incident rates, we observe and suggest that our nation-to-nation comparison of health burden is more directly related to the modeled changes in pollution concentration than could be allocated to nation-to-nation differences in the quality of incident rate statistics. We employ incidence rates from the most recent, peer-reviewed studies which represent populations similar to those in the Mediterranean Countries. In order to further account for uncertainty, we apply central as well as lower and upper bound relative risk functions, which allow the reader to interpret the 95% confidence interval of our health outcome estimates.

7.5.4 Fuel pricing data

We use time series fuel pricing data for the past 9 years. These data show that fuel prices are generally heavily coupled and proportional to one another. We apply conservative estimates of the maximum observed price spread between MGO (0.1% S) and MDO (0.5% S) and IFO380 (3.5% S). We do not assume any projected fuel prices, as analysis of inflation-adjusted fuel prices over the past 9 years shows little evidence of any trends in the data. We do not assume any dynamic equilibrium market effects, as this level of modeling effort falls outside the scope of this study. By estimating fuel costs using the maximum observed price spread we present a conservative upper bound of the expected maximum fuel costs based on the past 9 year's fuel pricing data.

7.5.5 Regional Delineation

Ship emissions, air quality, and health model outputs are all produced using a $0.1^{\circ} \times 0.1^{\circ}$ gridded resolution. Model outputs are georeferenced with the same origin, resolution, and extents. Model results, including fuel use, air quality concentrations, and health outcomes are estimated using these

gridded outputs. As such, gridded results along certain country boundaries may be arbitrarily attributed to one country or the other, on either side of the boundary, which likely follows a finer geographic resolution than our gridded results. This issue does not affect total or regional estimates, but may affect national allocations of emissions, air quality concentrations, and health benefits, especially in regions near national borders. Most notably, the country of Monaco, with a geographic area of 2 km² and claims to a 12nm territorial sea, is smaller than an individual grid cell (~11.11 km x 8.5 km), and as such is not individually identified in our model outputs. Similarly, the water area of Bosnia and Herzegovina (10km²) is below the threshold of our model outputs and aggregation methods, and as such estimates of emissions in the waters of Bosnia and Herzegovina are not individually estimated.

8 References

- 1. International Standardisation Organization (ISO), "Petroleum Products Fuels (Class F) -Specifications of Marine Fuels, ISO 8217," *Third Edition* (International Organization for Standardization, Geneva, Switzerland, 2005).
- 2. International Hydrographic Organization, *Limits of oceans and seas*. (International Hydrographic Organization, 1953).
- 3. M. Sofiev *et al.*, Cleaner fuels for ships provide public health benefits with climate tradeoffs. *Nature Communications* **9**, 406 (2018).
- 4. E. W. Carr, J. J. Corbett, Ship Compliance in Emission Control Areas: Technology Costs and Policy Instruments. *Environmental Science & Technology* **49**, 9584-9591 (2015).
- 5. W. K. Viscusi, C. J. Masterman, Income elasticities and global values of a statistical life. *Journal of Benefit-Cost Analysis* **8**, 226-250 (2017).
- 6. International Maritime Organization, Marine Environment Protection Committee, "Prevention of Air Pollution From Ships Sulfur Monitoring 2003," (International Maritime Organization, London, UK, 2004).
- 7. International Maritime Organization, Marine Environment Protection Committee, "Prevention of Air Pollution From Ships Sulfur Monitoring 2010," (International Maritime Organization, London, UK, 2011).
- 8. International Maritime Organization, Marine Environment Protection Committee, "Air Pollution and Energy Efficiency - Sulfur Monitoring 2016," (International Maritime Organization, London, UK, 2017).
- 9. T. W. P. Smith *et al., Third IMO GHG Study 2014*. (International Maritime Organization (IMO), London, UK, 2014), pp. 327.
- J. J. Corbett, C. Wang, J. J. Winebrake, E. Green, "Allocation and Forecasting of Global Ship Emissions," *BLG 11/INF.3* (Clean Air Task Force and Friends of the Earth International, Boston, MA, 2007).
- 11. J. Jonson, J. Jalkanen, L. Johansson, M. Gauss, H. Denier van der Gon, Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea. *Atmospheric Chemistry and Physics* **15**, 783-798 (2015).
- 12. International Maritime Organization, *MEPC 70/5/3 Assessment of fuel oil availability executive summary* (MEPC 70/5/3, 2016).
- 13. International Maritime Organization, *MEPC 70/INF.6 Assessment of fuel oil availability final report* (MEPC 70/INF.6, 2016).
- 14. I. Bouarar *et al.*, in *Air Pollution in Eastern Asia: An Integrated Perspective*. (Springer, 2017), pp. 387-403.
- 15. J. Kukkonen *et al.*, Modelling of the urban concentrations of PM 2.5 on a high resolution for a period of 35 years, for the assessment of lifetime exposure and health effects. *Atmospheric Chemistry and Physics* **18**, 8041-8064 (2018).
- 16. J. J. Corbett *et al.*, Mortality from ship emissions: a global assessment. *Environmental Science and Technology-Columbus* **41**, 8512 (2007).
- 17. J. J. Winebrake, J. J. Corbett, E. H. Green, A. Lauer, V. Eyring, Mitigating the Health Impacts of Pollution from Oceangoing Shipping: An Assessment of Low-Sulfur Fuel Mandates. *Environmental Science & Technology* **43**, 4776-4782 (2009).
- 18. B. Ostro, in *Environmental burden of disease series*. (OMS, 2004), vol. 5.
- 19. D. W. Dockery *et al.*, An Association between Air Pollution and Mortality in Six U.S. Cities. *New England Journal of Medicine* **329**, 1753-1759 (1993).

- 20. F. Laden, J. Schwartz, F. E. Speizer, D. W. Dockery, Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. *American journal of respiratory and critical care medicine* **173**, 667-672 (2006).
- 21. C. A. Pope, 3rd *et al.*, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *Jama* **287**, 1132-1141 (2002).
- 22. J. Lepeule, F. Laden, D. Dockery, J. Schwartz, Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. *Environmental health perspectives* **120**, 965 (2012).
- 23. X.-y. Zheng *et al.*, Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: a systematic review and meta-analysis. *PLoS One* **10**, e0138146 (2015).
- 24. Center for International Earth Science Information Network CIESIN Columbia University. (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2016).
- 25. United Nations, World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. New York: United Nations, Department of Economic and Social Affairs PD. *Population Division*, (2015).
- 26. World Health Organization, W. H. Organization, Ed. (2016).
- 27. World Health Organization, W. H. Organization, Ed. (2018).
- 28. Global Asthma Network, *The Global Asthma Report 2014* (Auckland, New Zealand, 2014).
- 29. H. Liu *et al.*, Health and climate impacts of ocean-going vessels in East Asia. *Nature climate change* **6**, 1037 (2016).
- J. Lepeule, F. Laden, D. Dockery, J. Schwartz, Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. *Environ Health Perspect* 120, 965-970 (2012).
- 31. R. T. Burnett *et al.*, An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. *Environ Health Perspect* **122**, 397-403 (2014).
- 32. California Air Resources Board, "Technology Assessment: Ocean-going Vessels," (California Air Resources Board, Sacramento, CA, 2018).
- 33. MAN Diesel & Turbo, "Costs and Benefits of LNG as Ship Fuel for Container Vessels," (MAN Group, Copenhagen, Denmark, 2012).
- 34. J. Soares, M. Sofiev, J. P. Jalkanen, in *NATO Science for Peace and Security Series C: Environmental Security*. (2013), vol. 137, pp. 413-417.
- 35. M. Sofiev, J. Soares, M. Prank, G. de Leeuw, J. Kukkonen, A regional-to-global model of emission and transport of sea salt particles in the atmosphere. *Journal of Geophysical Research: Atmospheres* **116**, (2011).
- 36. S. Tsyro *et al.*, Modelling of sea salt concentrations over Europe: key uncertainties and comparison with observations. *Atmospheric Chemistry and Physics* **11**, 10367-10388 (2011).
- 37. M. Prank *et al.*, Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005. *Atmospheric Chemistry and Physics* **16**, 6041-6070 (2016).
- 38. E. Solazzo *et al.*, Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII. *Atmospheric Environment* **53**, 75-92 (2012).
- 39. E. Solazzo *et al.*, Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. *Atmospheric environment* **53**, 60-74 (2012).