Use of dispersants in the Mediterranean Sea and Methodology for the Decision Making

Mediterranean Action Plan Barcelona Convention

REMPEC Regional Webinar November, 17th 2025 Stephane.le.floch@cedre.fr

Objectives of the talk

The main objective is to share with **Focal Points of REMPEC** the key findings of the study.

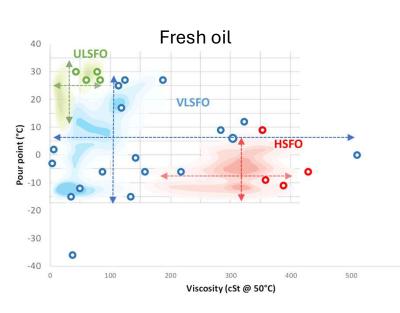
In particular to

- ✓ Determine how effective this technique will be according to the type of oil and its degree of weathering
- ✓ Asses its relevance with regard to environmental constraints and in comparison to other techniques
- ✓ To plan the logistics required to implement a dispersion operation (dispersant stockpiles, spraying equipment...)

Why use of dispersant

To transfer the pollutant from the surface into the water column to

- ✓ Prevent the oil from reaching the coast
- ✓ Limit damage to birds and mammals on water surface
- ✓ Reduce the amount of waste that will need treated (case of recovery)
- ✓ Reduce fire hazard and limit responders exposure
- ✓ Promote and accelerate oil degradation

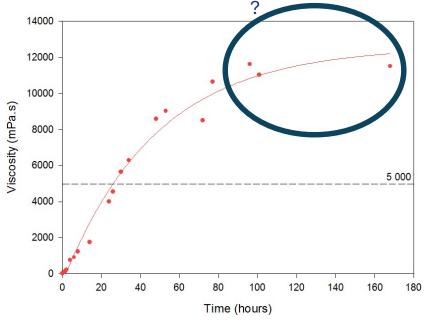


To determine how effective this technique will be according to the type of oil and its degree of weathering

Type of oil and degree of weathering

First requirement, according to the oil's viscosity (viscosity of the <u>fresh oil</u>)

Oil viscosity (c	St)	Effectiveness of chemical dispersion
< 500		Generally easy
500 < viscosity < 5	,000	Generally possible
5,000 < viscosity < 1	0,000	Uncertain – Requires checking
> 10,000		Generally not possible
Up to 15,000		Possible if oil is emulsified



Type of oil and degree of weathering

According to the oil's viscosity

a) oil weathering

Oil	Initial viscosity (mPa.s)
Crude 1	19

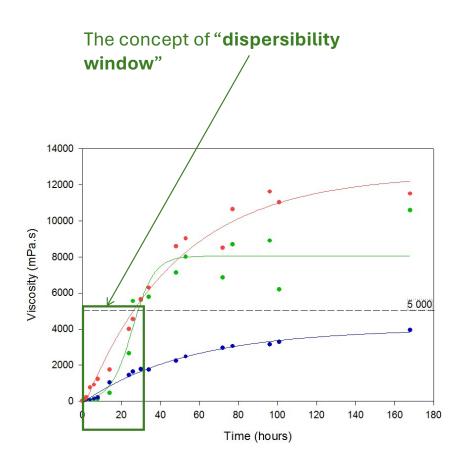
Emulsification

According to the oil's viscosity

a) oil weathering

Oil	Initial viscosity (mPa.s)
Crude 1	19
Crude 2	15

Type of oil and degree of weathering



According to the oil's viscosity

a) oil weathering

Oil	Initial viscosity (mPa.s)
Crude 1	19
Crude 2	15
Crude 3	11

b) Effect of temperature

Ш

Depending on the **type** of oil

Type of oil	Treatment option
Crude oils • Light crudes and moderate weathered crudes • Certain heavy crudes (e.g. Boscan, Venezuela)	Dispersion possible

Ш

Depending on the **type** of oil

Type of oil	Treatment option
Light refined products • E.g. Petrol/diesel/kerosene	Treatment possible but not worthwhile
Crude oils • Light crudes and moderate weathered crudes • Certain heavy crudes (e.g. Boscan, Venezuela)	Dispersion possible

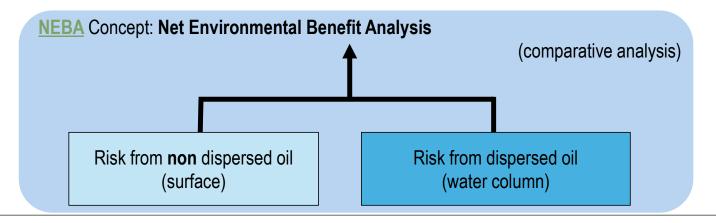
Ш

Depending on the **type** of oil

Type of oil	Treatment option
Light refined products • E.g. Petrol/diesel/kerosene	Treatment possible but not worthwhile
Crude oils • Light crudes and moderate weathered crudes Certain heavy crudes (e.g. Boscan, Venezuela)	Dispersion possible
Paraffinic crude oils and heavy refined oils (heavy fuel oils) The pour point may be > T _{SW} (initial or weathered crude)	Dispersion not possible

To assess the relevance of this technique with regard to environmental constraints and in comparison to other techniques

Is dispersion acceptable?



Dispersion helps to break down the oil

- First, large dilution of the pollution (dilution in 3D)
- And, biodegradation of oil droplets (decrease in pollution persistence)

At high concentration, dispersed oil can be more dangerous than the oil slick at the surface

- Dispersion can increase contact between living organisms and the oil –resident fish, coral...)
- Toxicity at high concentrations (which implies the requirement of **having sufficient water volume** for optimal dilution)

Is dispersion acceptable?

Offshore

Massive dilution potential

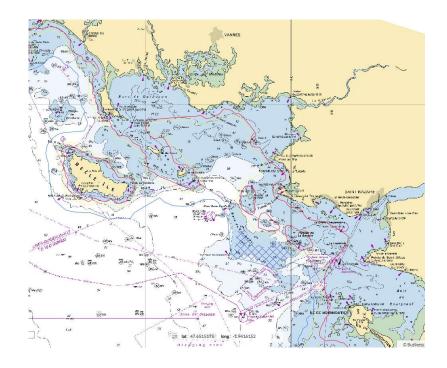
No real impact & optimal biodegradation conditions

Coastal waters

Dispersant use prohibited/limited/subject to authorisation

The French approach has been to define limits for which dispersion is acceptable or not

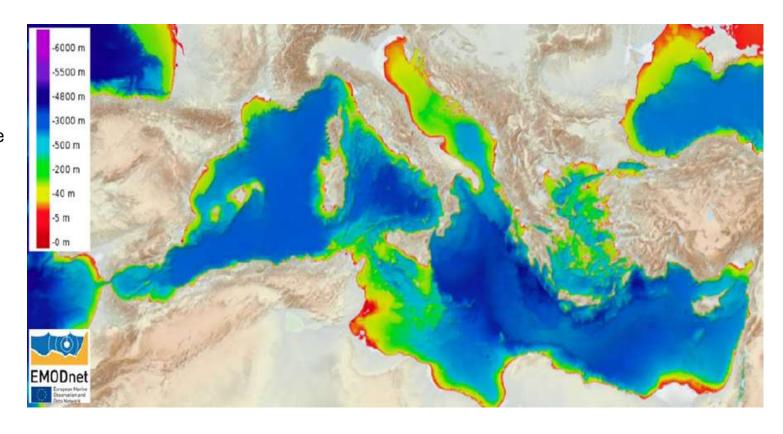
Amount of oil to be dispersed (tonnes)	Minimum depth (metres)	Minimum distance from shore (nautical mille)
Dispersion forbidden	< 5	< 0,5
< 10	5	0,5
10 < Oil < 100	10	1
> 100 Use of di	15 spersants in the Med	2,5 literranean Sea



Is dispersion acceptable?

Consideration of local specificities

- industrial sensitivity: wind farm, oyster farming...
- Environmental sensitivity: mussels, coral...



Need to consider the specific characteristics of the Mediterranean Sea

The characteristics of the sea are well documented:

- ✓ salinity,
- √ depth,
- √ water temperature,
- ✓ etc.

Need to consider the specific characteristics of the Mediterranean Sea

Search Clear

And local specificities:

- ✓ At national level (inventory of protected area...)
- ✓ At regional level (project) mapamed)

Site Fact Sheet

To plan the logistics required to implement a dispersion operation (dispersant stockpiles, spraying equipment, etc.).

Methodology for decision-making

1. Is dispersion possible? *(from a physical-chemical point*

(from a physical-chemical point of view)

2. Is dispersion acceptable?

(from an environmental point of view)

3. Is dispersion feasible?

(from a logistical point of view)

=> Decision-making criteria (viscosity limitation) Information on the pollutant

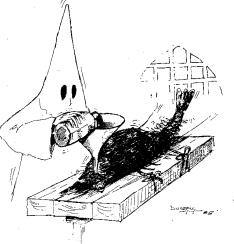
=> Geographical limitations for dispersion

Location of the pollution

=> Available **dispersants** & means of application

<u>Quantity of oil to be dispersed</u>

=> limitation of resources (ship, plane, spreading equipment...)


Conditions in the area

Innocuity of dispersants

In France, before use, a dispersant must be approved by *Cedre*. This approval includes

1. an efficiency test: NFT 90345

2. a toxicity test: on shrimps

3. a biodegradability test: NFT 90346

Several countries have their own approval system

Approval procedure is based on 2 goals

Dispersant selection

when selecting a dispersant, I want the most efficient product which is not toxic by itself.

Toxicity test of the dispersant itself

and not the toxicity of the oil+dispersant

Use of dispersant

when using dispersant,

I want to be the most efficient
and keep inside safe toxicity
level.

Geographical limits for the use of dispersants based on toxicity of the dispersed oil and the assessment of the

Don't forget the product stability

Need to have a stockpiles quality control

At European level, question of pooling stockpiles to optimize dispersant availability and turn over...

In nutshell

One possible response option out of many

oil is broken down by the environment

Limitations: viscosity, agitation, dilution

Choice must be made quickly: when dispersant is applied to a product, it becomes very difficult to recover, even if dispersion is ineffective

Conditions and precautions of use to be respected

Importance of planning and policy

Mediterranean Action Plan Barcelona Convention

