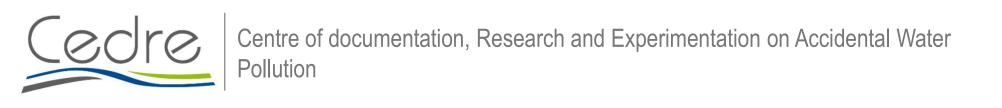
Definition of "Low Sulphur Fuels" and "Alternative Fuels"

Understanding their behavior at sea through experimental inputs



Mediterranean Action Plan Barcelona Convention

REMPEC Regional Webinar November, 17th 2025 ronan.jezequel@cedre.fr

Definition of "Low Sulphur Fuels" and "Alternative Fuels"

Understanding their behavior at sea through experimental inputs

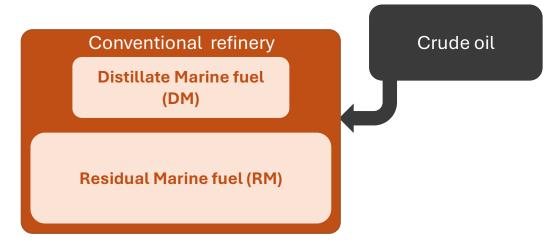
REMPEC Regional Webinar November, 17th 2025 ronan.jezequel@cedre.fr

HFO?

HSFO?

These appellations appeared as a consequence of the evolution of regulation for NOx, SOx and PM emissions

Progressive **reduction of sulfur content in fuels** since 2012


< 4.5 % before 2012

< 3.5 % from 2012

< 0.5 % from 2020

MGO: Marine Gas Oil MDO: Marine Diesel Oil

Residual Marine fuel (RM)

Crude oil

Distillate Marine fuel (DM)

MGO: Marine Gas Oil MDO: Marine Diesel Oil

Residual Marine fuel (RM)

ULSFO: Ultra Low Sulfur Fuel Oil VLSFO: Very Low Sulphur Fuel Oil HSFO: High Sulphur Fuel Oil Crude oil

Ver. 2017 Residual Marine Fuel (RMA10 RMK700)

								Catégories ISO-F- RMG						
Caractéristi	ques	Unités	Limites	RMA	RMB	RMD	RME	RMG				RMK		
				10	30	80	180	180	380	500	700	380	500	700
Viscosité ciném à 50 °C	atique	mm²/s a	max	10,00	30,00	80,00	180,0	180,0	380,0	500,0	700,0	380,0 500,0 700,		
Masse volumiqı 15 °C	ıe à	kg/m ³	max	920,0	960,0	975,0	991,0	991,0				1010,0		
CCAI		-	max	850	860	860	860	870				870		
Soufre ^b		% en masse	max				1	Exigences réglementaires			es			
Point d'éclair		°C	min	60,0	60,0	60,0	60,0	60,0					60,0	
Hydrogène sulf	uré	mg/kg	max	2,00	2,00	2,00	2,00	2,00						
Indice d'acide c		mg KOH/g	max	2,5	2,5	2,5	2,5		2	,5		2,5		
Sédiments tota après vieillisser		% en masse	max	0,10	0,10	0,10	0,10		0,	10		0,10		
Résidu de carbo Méthode micro	ne -	% en masse	max	2,50	10,00	14,00	15,00		18	,00		20,00		
Point	hiver	°C	max	0	0	30	30		3	0			30	
d'écoulement (supérieur) ^d	été	°C	max	6	6	30	30		3	0			30	
Eau		% en volume	max	0,30	0,50	0,50	0,50	0,50					0,50	
Cendres		% en masse	max	0,040	0,070	0,070	0,070	0,100					0,150	
Vanadium		mg/kg	max	50	150	150	150	0 350 450						
Sodium		mg/kg	max	50	100	100	50	0 100 100						

depends on the SECA area in which the ship will operate

Definitions of LSF ISO 8217 classification of marine fuel

Ш

Ver. 2017 Residual Marine Fuel (RMA10 RMK700)

	\Box							Caté	gories l	SO-F-					
Caractéristiques		Unités	Limites	RMA	RMB	RMD	RME		R	MG			RMK		
				10	30	80	180	180	380	500	700	380	500	700	
Viscosité cinématiqu à 50 °C	ie	mm²/s a	max	10,00	30,00	80,00	180,0	180,0	380,0	500,0	700,0	380,0	500,0	700,0	
Masse volumique à 15 °C		kg/m ³	max	920,0	960,0	975,0	991,0		99	1,0			1010,0		
CCAI		-	max	850	860	860	860		8	70			870		
Soufre b	9	% en masse	max					Exigence	es réglei	nentair	es				depends on the SECA area in which the ship will operate
Point d'éclair		°C	min	60,0	60,0	60,0	60,0		6	0,0			60,0		
Hydrogène sulfuré		mg/kg	max	2,00	2,00	2,00	2,00		2,	00			2,00		
Indice d'acide c		mg KOH/g	max	2,5	2,5	2,5	2,5		2	,5			2,5		
Sédiments totaux après vieillissement	9	% en masse	max	0,10	0,10	0,10	0,10		0,	10			0,10		
Résidu de carbone – Méthode micro	9	% en masse	max	2,50	10,00	14,00	15,00		18	,00			20,00		
Point hive	er	°C	max	0	0	30	30		3	0			30		
d'écoulement (supérieur) d été		°C	max	6	6	30	30		3	0			30		
Eau		% en volume	max	0,30	0,50	0,50	0,50		0,	50			0,50		
Cendres	9	% en masse	max	0,040	0,070	0,070	0,070		0,:	100			0,150		
Vanadium		mg/kg	max	50	150	150	150		3	50			450		
Sodium	T	mg/kg	max	50	100	100	50		1	00			100		
							`							J	L
			1						<u> </u>	_γ					
							<u> </u>		´ 	15	FO				
					<u></u>		J		[5	31<3	,5%)			
					[S]<	F (<0,5	%		۲.	., .	, - /	-			

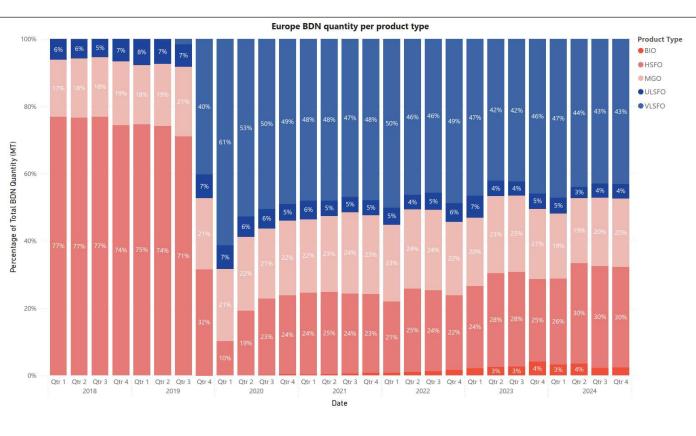
Definition of "Low Sulphur Fuels" and "Alternative Fuels"

Definitions of LSF ISO 8217 classification of marine fuel

Ш

Ver. 2017 Residual Marine Fuel (RMA10 RMK700)

								Caté	gories I	SO-F-				
Caractéristic	ques	Unités	Limites	RMA	RMB	RMD	RME		RM	MG			RMK	
				10	30	80	180	180	380	500	700	380	500	700
Viscosité cinéma à 50 °C	atique	mm ² /s ^a	max	10,00	30.00	80.00	180,0	180,0	380,0	500,0	700,0	380,0	500,0	700,0
Masse volumiqu 15 °C	e à	kg/m ³	max	920,0	960,0	975,0	991,0		99	1,0			1010,0	
CCAI		_	max	850	850 860 860 860 870								870	
Soufre ^b		% en masse	max				1	Exigence	es régler	nentaire	es			
Point d'éclair		°C	min	60,0	60,0	60,0	60,0		60	0,0			60,0	
Hydrogène sulfu	ıré	mg/kg	max	2,00	2,00	2,00	2,00		2,	00			2,00	
Indice d'acide ^c		mg KOH/g	max	2,5	2,5	2,5	2,5		2	,5			2,5	
Sédiments totau après vieillissen		% en masse	max	0,10	0,10	0,10	0,10		0,	10			0,10	
Résidu de carbo Méthode micro	ne –	% en masse	max	2,50	10,00	14,00	15,00		18	,00		20,00		
Point	hiver	°C	max	0	0	30	30		3	0		30		
d'écoulement (supérieur) ^d	été	°C	max	6	6	30	30		3	0		30		
Eau		% en volume	max	0,30	0,50	0,50	0,50		0,	50			0,50	
Cendres		% en masse	max	0,040	0,070	0,070	0,070		0,1	100		į.	0,150	
Vanadium		mg/kg	max	50	150	150	150		35	50	450			
Sodium		mg/kg	max	50	100	100	50		10	00			100	


[S] < 0.5%

[S] <

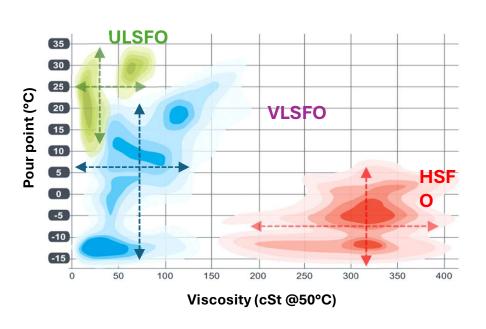
110/

depends on the SECA area in which the ship will operate

< 2020: 75% HSFO

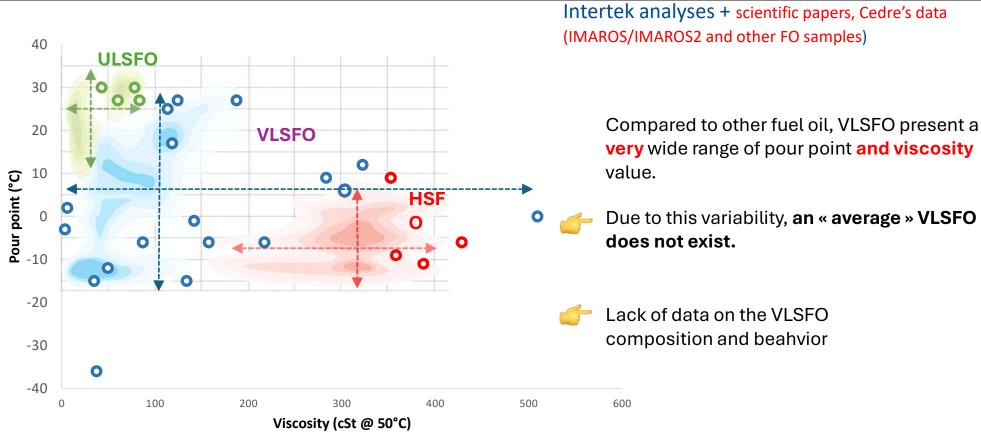
> 2020: HSFO > VLSFO >

Graph reproduced from Veritas Petroleum Services data (VPS PortStats)



- VLSFO is a type of marine fuel oil with a reduced sulfur content, designed to meet environmental regulations (IMO 2020 regulation)
- ♦ VLSFO exhibit diverse physico-chemical properties due to :
 - Variability of crude oil(s) composition (aromatic, asphaltenic, paraffinic) which modify FO composition;
 - Blending components used to meet the sulfur limits (waxy products);
 - Refinery processe(s) (hydrodesulfurization, hydrocracking, hydroprocessing) which induce an increase of paraffins compounds and loss of lubricating properties (due to sulfur loss).
 - → An average **VLSFO** does not exist
- ♦ Key physico-chemical properties of VLSFO that influence oil behavior at sea
 - Density
 - Viscosity
 - Pour Point
 - Asphaltens concentrations
 - Waxes concentrations

Intertek lab analyses


	PP (°C)	Viscosity (cSt @ 50°C)
ULSFO	+10 → +34	10 → 80
VLSFO	-15 → +30	10 → 180
HSFO	-15 → +7	180 → 380

Compared to other fuel oil, VLSFO present a wide range of PP value.

https://www.infineuminsight.com/en-gb/articles/managing-waxy-marine-fuels/

IMAROS / IMAROS 2 project

Project name: IMpacts And Response Options regarding low

sulphur marine fuel oil Spills

Project Acronym: IMAROS / IMAROS 2

Duration: 2020-2022 / 2024-2025

Funding source Union Civil Protection Mechanism

IMAROS / IMAROS 2 project

Main objectives

- Improve understanding of oil spill behaviour of LSFOs, and consequently decision making on all levels of oil spill response operations
- Improve capacities of mechanical recovery and shoreline response

Experiment on VLSFO behavior

Cedre's flume tank: the Polludrome®


- Circular loop of about 18 m long
- 7m³ of fresh water
- Water depth: 90 cm
- Wave height / frequency: 25 cm / 6 s
- Current: 20 cm/s
- Wind: 3m/s
- Weathering duration: 7 days

Waves generator

Current generator

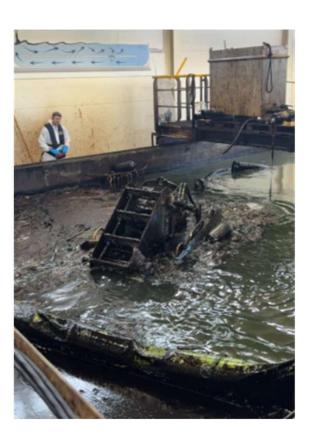
UV units simulate solar radiation

Experiment on VLSFO behavior

Example: IM-28 VLSFO, 25°C - SW

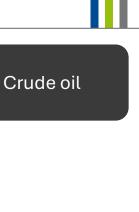
~20 000 mPa.s

~20 000 mPa.s 48% water

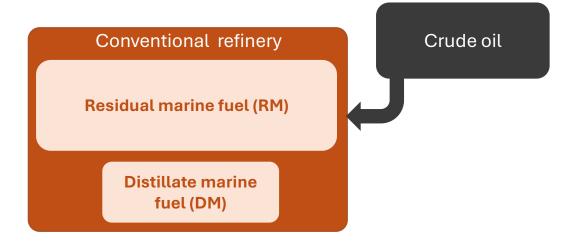

63 000 mPa.s 84% water

- No flammability issues
- Persistent products
- Floating oils
- Chemical dispersion seems limited to some fresh oils
- Recovery recommended even if challenged for some oils due to high pour points (> 30°C)

Recovery tests of VLSFO



- ◆ Test of <u>dynamic</u> skimmers specifically designed for IMAROS2 project
- ♦ VLSFO selected for these tests was the most "problematic" IMAROS2 oil
- VLSFO can be problematic to manage in term of oil spill response



Conventional refinery

Residual marine fuel (RM)

Vegetable oil Used Cooking Oil Animal Fat Cashew Nut Shell Liquid

Crude oil

Vegetable oil Used Cooking Oil Animal Fat Cashew Nut Shell Liquid

Bio refinery

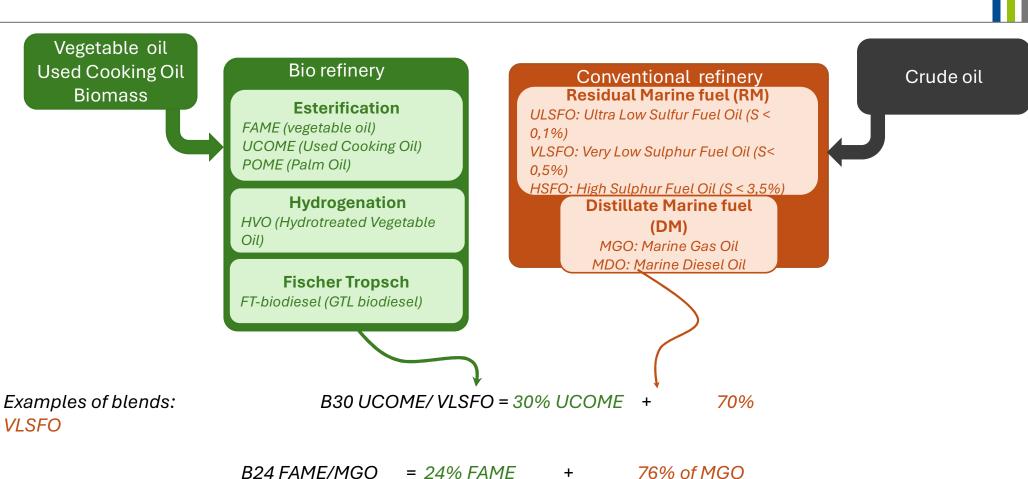
Esterification

FAME (vegetable oil)
UCOME (Used Cooking Oil)
POME (Palm Oil)

Hydrogenation

HVO (Hydrotreated Vegetable Oil)

Fischer Tropsch


FT-biodiesel (GTL biodiesel)

Conventional refinery

Residual marine fuel (RM)

Distillate marine fuel (DM)

B100 (or 'biodiesel') = 100% FAME or 100% HVO or 100%FT Definition of "Low Sulphur Fuels" and "Alternative Fuels"

ISO 8217 classification of marine fuel **Definitions of LSF**

V2017

Residual Marine Fuel

								Caté	gories	SO-F-				
Caractéristi	ques	Unités	Limites	RMA	RMB	RMD	RME		R	MG			RMK	
				10	30	80	180	180	380	500	700	380	500	700
Viscosité ciném à 50 °C	atique	mm²/s a	max	10,00	30,00	80,00	180,0	180,0	380,0	500,0	700,0	380,0	500,0	700,0
Masse volumiqu 15°C	ue à	kg/m ³	max	920,0	960,0	975,0	991,0		99	1,0			1010,0	
CCAI		_	max	850	860	860	860		8	70		870		
Soufre b		% en masse	max					Exigence	es régle	mentaire				
Point d'éclair	°C	min	60,0	60,0	60,0	60,0		6	0,0		60,0			
Hydrogène sulf	uré	mg/kg	max	2,00	2,00	2,00	2,00	2,00				2,00		
Indice d'acide c		mg KOH/g	max	2,5	2,5	2,5	2,5	2,5				2,5		
Sédiments tota après vieillisser		% en masse	max	0,10	0,10	0,10	0,10		0,	10		0,10		
Résidu de carbo Méthode micro	one –	% en masse	max	2,50	10,00	14,00	15,00		18	,00		20,00		
Point	hiver	°C	max	0	0	30	30		3	30			30	
d'écoulement (supérieur) ^d	été	°C	max	6	6	30	30		3	30			30	
Eau		% en volume	max	0,30	0,50	0,50	0,50	0,50					0,50	
Cendres		% en masse	max	0,040	0,070	0,070	0,070	0,100				,	0,150	
Vanadium		mg/kg	max	50	150	150	150	350				450		
Sodium		mg/kg	max	50	100	100	50	0 100 1			100			

LSF **HSFO**: [S] < 3,5%

ULSFO: [S] < 0,1%

VLSFO: [S] < 0,5%

No mention of FAME in V2017

V2017 Residual (IFO 180, 380, 500...)

								Caté	gories l	SO-F-				
Caractéristi	ques	Unités	Limites	RMA	RMB	RMD	RME		R	MG			RMK	
				10	30	80	180	180	380	500	700	380	500	700
Viscosité ciném à 50 °C	atique	mm²/s a	max	10,00	30,00	80,00	180,0	180,0	380,0	500,0	700,0	380,0	500,0	700,0
Masse volumiqu 15 °C	ıe à	kg/m³	max	920,0	960,0	975,0	991,0		99	1,0			1010,0	
CCAI		_	max	850	860	860	860		8	70			870	
Soufre b		% en masse	max]	Exigence	es régler					
Point d'éclair		°C	min	60,0	60,0	60,0	60,0		60	0,0		60,0		
Hydrogène sulf	uré	mg/kg	max	2,00	2,00	2,00	2,00		2,	00		2,00		
Indice d'acide c	, 0			2,5	2,5	2,5	2,5	2,5				2,5		
Sédiments tota après vieillisser		% en masse	max	0,10	0,10	0,10	0,10	0,10					0,10	
Résidu de carbo Méthode micro	one -	% en masse	max	2,50	10,00	14,00	15,00	18,00					20,00	
Point	hiver	°C	max	0	0	30	30		3	0			30	
d'écoulement (supérieur) ^d	été	°C	max	6	6	30	30		3	0			30	
Eau		% en volume	max	0,30	0,50	0,50	0,50		0,	50			0,50	
Cendres		% en masse	max	0,040	0,070	0,070	0,070		0,1	100			0,150	
Vanadium		mg/kg	max	50	150	150	150		3	50		450		
Sodium		mg/kg	max	50	100	100	50		1	00		100		
								1			-			

LSF

HSFO: [S] < 3,5%

ULSFO: [S] < 0,1% VLSFO: [S] < 0,5%

Ver. Residual

2024◆ 4 grades of fuel oil (RM) with [S] < 0,5% and no FAME

				Catégor	ie ISO-F-			
Caractéristiques	Unités	Limite	RMA 20-0,5 RMA 20-0,1	RME 180-0,5 RME 180-0,1	RMG 380-0,5 RMG 380-0,1	RMK 500-0,5 RMK 500-0,1		
Exigences générales				Article	es 5 à <u>10</u>			
Viscosité cinématique à 50 °Ca	mm ² /s ^b	max.	20,00	180,0	380,0	500,0		
viscosite cinematique a 50 °C"	mm-/s	min.	2,000°	20,00	120,0	150,0		
Masse volumique à 15 °C	kg/m ³	max.	955,0	9	91,0	1 010,0		
CCAI		max.	860	870				
Teneur en soufre en masse	%	max.	0,50 ou	l'exigence régleme	ntaire, si elle est i	nférieure ^d		
Point d'éclair	°C	min.		6	0,0			
Hydrogène sulfuré	mg/kg	max.		2	,00			
Indice d'acide ^e	mg KOH/g	max.		1	2,5			
Teneur en résidu de carbone en masse - Méthode micro	%	max.	10,00	15,00	18,00	20,00		
Point d'écoulement (supérieur) ^f	°C	max.	6		30			
Teneur en eau en volume	%	max.	0,30		0,50			
Teneur en cendres en masse	%	max.	0,070	0	,100	0,150		
Vanadium	mg/kg	max.	150		350	450		

V2017 Residual (IFO 180, 380, 500...)

								Caté	gories I	SO-F-				
Caractéristi	ques	Unités	Limites	RMA	RMB	RMD	RME		RI	ИG			RMK	
				10	30	80	180	180	380	500	700	380	500	700
Viscosité ciném à 50 °C	atique	mm²/s a	max	10,00	30,00	80,00	180,0	180,0	380,0	500,0	700,0	380,0	500,0	700,0
Masse volumiqu 15 °C	ıe à	kg/m ³	max	920,0	960,0	975,0	991,0		99	1,0			1010,0	
CCAI		-	max	850	860	860	860		8	70			870	
Soufre b		% en masse	max				1	Exigence	es régler	nentaire	es			
Point d'éclair	oint d'éclair ydrogène sulfuré		min	60,0	60,0	60,0	60,0		60	0,0		60,0		
Hydrogène sulf			max	2,00	2,00	2,00	2,00	2,00				2,00		
Indice d'acide c			max	2,5	2,5	2,5	2,5	2,5				2,5		
Sédiments totai après vieillisser		% en masse	max	0,10	0,10	0,10	0,10		0,	10			0,10	
Résidu de carbo Méthode micro	ne -	% en masse	max	2,50	10,00	14,00	15,00	18,00					20,00	
Point	hiver	°C	max	0	0	30	30		3	0		30		
d'écoulement (supérieur) ^d	été	°C	max	6	6	30	30		3	0		30		
Eau		% en volume	max	0,30	0,50	0,50	0,50		0,	50			0,50	
Cendres		% en masse	max	0,040	0,070	0,070	0,070		0,1	.00			0,150	
Vanadium		mg/kg	max	50	150	150	150		35	50			450	
Sodium		mg/kg	max	50	100	100	50		10	00			100	

LSF

ULSFO: [S] < 0,

VLSFO: [S] < 0,5%

HSFO: [S] < 3,5%

V2024 Residual

- ◆ 4 grades of fuel oil (**RM**) with [S] < 0,5%
- ◆ 4 grades of fuel oil (RM..H) with [S] > 0,5% and no FAME

6	1114.6			(Catégorie ISO-F-				
Caractéristiques	Unité	Limite	RME 180H	RMG 180H	RMG 380H	RMK 500H	RMK 700H		
Exigences générales					Articles 5 à 10				
Viscosité cinématique à 50 °Ca	mm²/sb	max.	180,0	180,0	380,0	500,0	700,0		
viscosite cinematique a 50 °C"	mm=/s	min.	20,00°	20,00°	120,0	15	0,0		
Masse volumique à 15 °C	kg/m ³	max.		991,0		1 0	10,0		
CCAId		max.	860 870						
Teneur en soufre en masse	%	max.		Ex	igences statutaire	se			
Point d'éclair	°C	min.			60				
Hydrogène sulfuré	mg/kg	max.			2,00				
Indice d'acide ^f	mg KOH/g	max.			2,5				
Teneur en sédiments totaux accélérés ou potentiels en masse	%	max.			0,108				
Teneur en résidu de carbone en masse - Méthode micro	%	max.	15,00	18	,00	20	,00		
Point d'écoulement (supérieur)	°C	max.	max. 30						
Teneur en eau en volume	%	max.			0,50				
Teneur en cendres en masse	%	max.	0,070	0,1	100	0,1	.50		

V2017 Residual (IFO 180, 380, 500...)

		Unités Limites RMA RMB RMD RME RMG						SO-F-							
Caractéristi	ques	Unités	Limites	RMA	RMB	RMD	RME		R	MG			RMK		
				10	30	80	180	180	380	500	700	380	500	700	
Viscosité ciném à 50 °C	atique	mm²/s a	max	10,00	30,00	80,00	180,0	180,0 380,0 500,0 700,0				380,0	500,0	700,0	
Masse volumiqu 15 °C	ıe à	kg/m³	max	920,0	960,0	975,0	991,0	991,0				1010,0			
CCAI		_	max	850	860	860	860	870				870			
Soufre b		% en masse	max				I	Exigences réglementaires							
Point d'éclair		°C	min	60,0	60,0	60,0	60,0	60,0				60,0			
Hydrogène sulf	uré	mg/kg	max	2,00	2,00	2,00	2,00	2,00				2,00			
Indice d'acide ^c		mg KOH/g	max	2,5	2,5	2,5	2,5	2,5				2,5			
Sédiments totai après vieillisser		% en masse	max	0,10	0,10	0,10	0,10		0,	10		0,10			
Résidu de carbo Méthode micro	ne –	% en masse	max	2,50	10,00	14,00	15,00		18	,00		20,00			
Point	hiver	°C	max	0	0	30	30		3	0			30		
d'écoulement (supérieur) ^d	été	°C	max	6	6	30	30		3	0			30		
Eau		% en volume	max	0,30	0,50	0,50	0,50		0,	50			0,50		
Cendres		% en masse	max	0,040	0,070	0,070	0,070		0,1	100			0,150		
Vanadium		mg/kg	max	50	150	150	150	350			450				
Sodium		mg/kg	max	50	100	100	50	0 100 1			100				

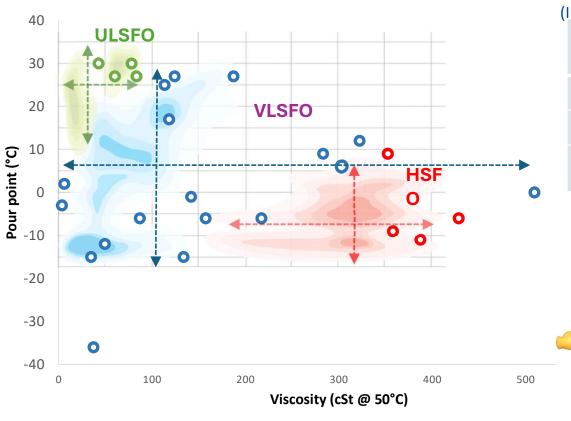
LSF

HSFO: [S] < 3,5%

ULSFO: [S] < 0,156 VLSFO: [S] < 0,5%

Ver. Residual

 \bullet 2024 grades of fuel oil (RM) with [S] < 0.5%


- ◆ 4 grades of fuel oil (RM) with [S] > 0,5%
- ♦ 5 grades of fuel oil (RF) with [S] < 0,5% and [FAME] < 100%

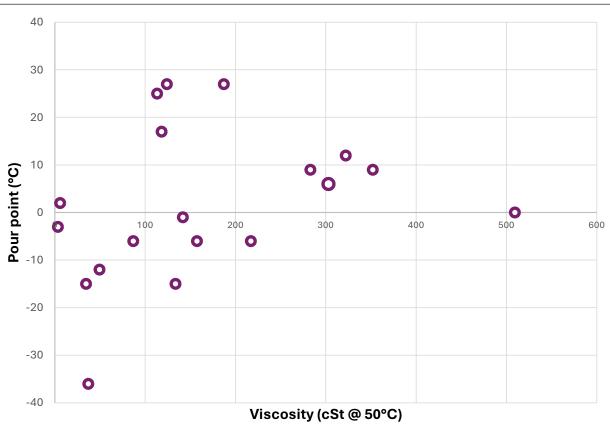
S	11-14/-			C	atégorie ISO-	F-j		
Caractéristiques	Unités	Limite	RF 20	RF 80	RF 180	RF 380	RF 500	
Exigences générales				2	Articles 5 à 10			
Viscosité cinématique à 50 °Ca	mm²/sb	max.	20,00	80,00	180,0	380,0	500,0	
viscosite cinematique à 50 °C"	mm-/s-	min.	2,000c	20,00	80,00	120,0	380,0	
Densité à 15 °C	kg/m ³	max.	955,0		991,0		1 010,0	
CCAI	ma				8	70		
Teneur en soufre en masse	%		860 870 Exigences statutaires ^d					
Point d'éclair	°C	min.			60,0			
Hydrogène sulfuré	mg/kg	max.						
Indice d'acide ^e	mg KOH/g	max.			2,5	15	300	
Teneur en résidu de carbone en masse - Méthode micro	%	max.	10,00	15	5,00	18,00	20,00	
Point d'écoulement (supérieur) ^f	°C	max.	6		3	0		
Teneur en eau en volume	%	max.	0,30		0,	50		
Teneur en cendres en masse	%	max.	0,070		0,100		0,150	
Vanadium	mg/kg	max.	150	150 350 4				
Sodium	mg/kg max.				100			
Teneur en esters méthyliques d'acides gras (EMAG) en masse	%		A indiquer ⁱ					

VLSFO: examples of data (literature + lab work)

Intertek analyses + scientific papers, Cedre's data (IMAROS/IMAROS2 and other FO samples)

	PP (°C)	Viscosity (cSt @ 50°C)
ULSFO	+10 → +34 ✓	10 → 80 ✓
VLSFO	-15 → +30 √	10 → 180 🗶
HSFO	-15 → +7 🗸	180 → 380 ✓

Compared to other fuel oil, VLSFO present a **very** wide range of pour point **and viscosity** value.


Due to this variability, oil spill response strategies for VLSFO are difficult to predict.

An « average » VLSFO does not exist.

Q: How the properties of **VLSFO** (B0) will change when mixed with **FAME** (Bx)?

Funded by

2025 project

Project name: Alternative fuel as Marine pollutants and Response to

Accidental Releases

Duration: 3 years

Funding source: EMSA

2025 project

- Project conducted in 3 years:
 - Year 1: blends of biodiesels with marine fuel oil
 - Year 2: biodiesels
 - Year 3: other alternative fuels (ammonia, methanol ...)
- 4WPs

WP 1

Inventory compilation of studies and research

Characterization of chemical and physical properties

Safety and environmental assessment

WP 2

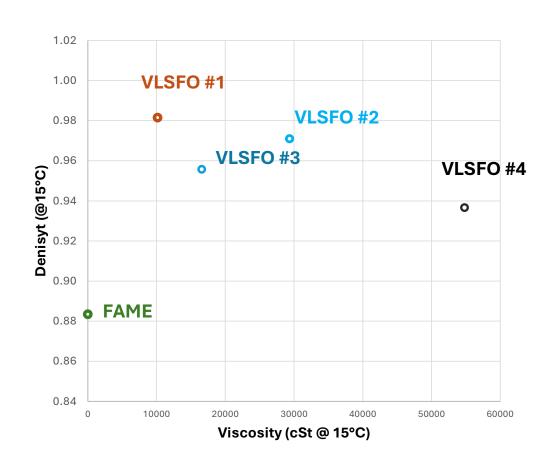
Regulatory review and gap analysis

WP3

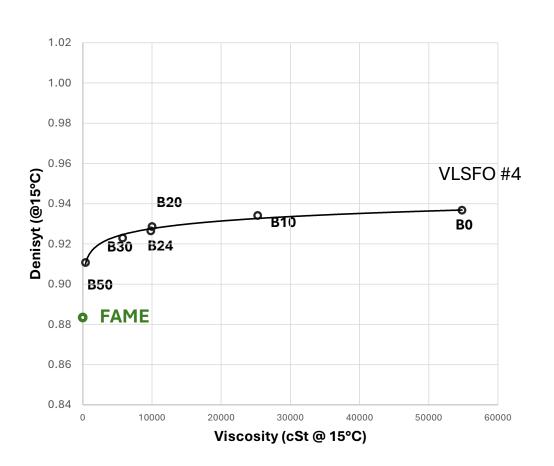
Response measures and technology analysis

WP 4

Summary and recommendation

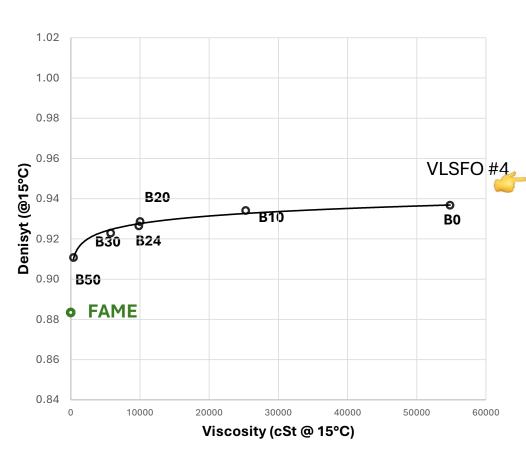

2025 project

- Lab caracterisation of various blends
 - Different biodiesels (FAME or HVO) mixed with 4 VLSFO at different ratios (B0 \rightarrow B50): effect on viscosity, pour point, density, biodegradability
- Weathering studies in flume tank of 3 blends
 - B30 FAME/VLSFO
 - B30 FAME/MGO
 - B30 HVO/VLSFO
- Test of oil spill response techniques
 - ISB
 - Mechanical recovery (skimmer, sorbent)
 - Chemical dispersion
- Behavior prediction: 2 scenarios / 3 modeling (OILMAP, OSERIT, MOHID)



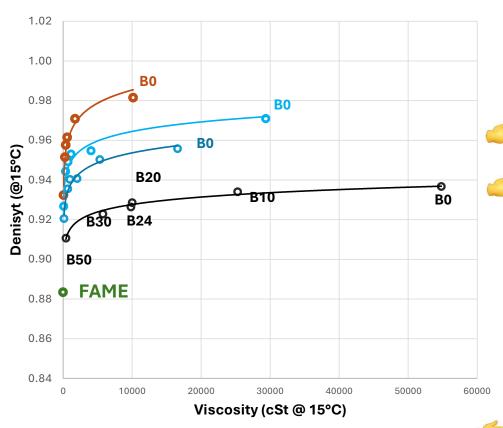
Q: How the properties of **VLSFO** (B0) will change when mixed with **FAME** (Bx)?

4 **VLSFO** with different viscosities blended with 1 **FAME**



4 VLSFO with different viscosities blended with 1 FAME

	VLSFO (%)	FAME (%)
В0	100	0
B10	90	10
B20	80	20
B24	76	24
B30	70	30
B50	50	50


4 **VLSFO** with different viscosities blended with **1 FAME**

Slight difference of density (from 0,91 up to 0,94): blends remain 'floater' at sea.

Significant decrease of viscosity with biodiesel content: from 50 000 cSt (B0) to 400 cSt (B50).

4 **VLSFO** with different viscosities blended with **1 FAME**

Slight difference of density: blends remain 'floater' at sea.

Significant decrease of viscosity for each VLSFO

Variability of viscosity between VLSFO decrease significantly while blended with biodiesel

- For B50 blends, viscosity are comprised between 60 cSt and 400 cSt): in term of oil spill response strategies, these viscosities are very close
- For B30 blends, viscosities are comprised between 300 cSt and 6000 cSt: possible influence on chemical dispersibility efficiency, emulsification ...

 For a dedicated VLSFO, oil spill response strategies can change according to biodiesel part.

Blends of biofuel / VLSFO weathering studies

B30 FAME / VLSFO

200 mPa.s 10% water

3 800 mPa.s 84% water

6 400 mPa.s — 85% water

VLSFO alone

63 000 mPa.s 84% water

Blends of biofuel / VLSFO weathering studies

B30 HVO / VLSFO

200 mPa.s 20 000 mPa.s 20% water 84% water

80 000 mPa.s 85% water

VLSFO alone

63 000 mPa.s 84% water

Blends of biofuel / VLSFO recovery tests

Skimmer #1: oleophilic skimmer with drums

- Efficient during the first minutes (good attraction of the oil)
- Efficiency decreases progressively (water film between the slick and the drums)
- Necessary to agitate the water and to push the oil
- ♦ Good selectivity

Skimmer #2: weir skimmer

- Good attraction of the slick into the skimmer
- Efficient recovery
- Low selectivity = need large tank for decantation

Conclusions

Recent evolution of regulations regarding NOx, SOx and PM emission is leading to the emergence of new fuels

LSFO is a category of new fuels with a high variability of physico chemical properties (especially for VLSFO)

VLSFO behavior is difficult to predict (some are liquid, other are semi-solid)

Blend of biodiesel with marine fuel increase the variability of physicochemical properties and their behavior when spilled at sea

Conventional Oil Spill Response strategies seems to be adapted for blends of biodiesel with marine fuel > Need to be confirmed for other VLSFO and other biodiesel

Q/R

THANK YOU

Mediterranean Action Plan Barcelona Convention

